ECE/CS 252 Fall 2011 Homework 3 (25 points) Due in Discussion Wednesday, October 05, 2011

Instructions: You should do this homework <u>in the groups assigned to you in discussion</u>. You should hand in ONE copy of the homework that lists your discussion section number and names and UW ID numbers of all students. You must *staple* all pages of your homework together to receive full credit.

Warning: Most homework will use questions from your textbook, Patt and Patel's *Introduction to Computing Systems*, which we abbreviate (*ItCS*).

First contact for questions is TA Preeti Agarwal: pagarwal7@wisc.edu

Problem 1 (4+1 points)

- a) Draw the logic circuit corresponding to the following logic expression. Use only 2- input AND gates, 2- input OR gates, 2-input XOR gate and 1- input NOT gate.
- b) Determine output Y when inputs A='1', B='0' and C='1'.
- c) Y= (((NOT(NOT(A) AND B)) OR NOT(C))XOR A) AND (A OR NOT (C))

Solution a)

d) Solution b) Y= '0'.

Problem 2 (1.5 +1.5 points)

a)Implement NOT function using XOR logic gate.

b) Similarly, implement NOT function using XNOR logic gate.

Solution a) and b)

Problem 3 (3.5+1.5 points)

a)Write the Truth –table for the following logic expression.

Y= (NOT((A AND B) OR(B AND C) OR (C AND A))) XOR (NOT(A))

b) Based on the truth table, draw the two-level logic diagram. You can use three- input gates.

Solution a)

А	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Solution b)

(If you have used XOR gate, its fine.)

Problem 4 (3.5 +1.5 points)

a) Complete a truth table for the transistor-level circuit given below.

A	В	С	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

b) Complete a truth table for the transistor-level circuit given below. Replace the circuit with a logic gate.

IN	OUT
0	1
1	0

Logic gate:

Problem 5 (3.5+1.5 points)

- a) Use 2:1 Multiplexers to implement an 8:1 multiplexer. (Hint: We use three 2:1 multiplexers to implement a 4:1 multiplexer)
- b) In your diagram, label inputs i0 i7, and use select line 5_{10} to determine output Y.

Problem 6 (2 points)

Complete the table below. A, B and C_{in} are the inputs to a full adder. S is the sum bit, and C_{out} is the carry-out bit.

A	В	Ci	S	C _{i+1}
0	0	0	0	0
0	0	1	1	0
1	1	0	0	1
1	1	1	1	1