

Computers!

- Engineers and scientists of all disciplines rely on computers for many aspects of their work
 - Not just word processing, spreadsheets, CAD, etc.
 - Computational methods, data mining, analysis/synthesis are fundamental to advances in many fields
- Many of the advanced techniques used in today's microprocessors were invented right here at UW
- Some of the most renowned computer design researchers in the world are on our faculty
- There is a near-100% likelihood that a Wisconsin graduate helped design the computer or processor that you own

Year	Salary	Comments		
0	\$10	Base		
3	\$40	Still live at home		
16	\$18K	Buy car		
21	\$193K	Buy median house in Madison		
36	\$223M	Need fundamentally new ways to spend money		
51	\$2.5T	Replace US Federal Government		

\$10 base; 60% growth

Performance Growth Unmatched by any other industry ! [John Crawford, Intel] • Doubling every 18 months (1982-1996): 800x – Cars travel at 44,000 mph and get 16,000 mpg – Air travel: LA to NY in 22 seconds (MACH 800) – Wheat yield: 80,000 bushels per acre

- Doubling every 24 months (1971-1996): 9,000x
 Cars travel at 600,000 mph, get 150,000 mpg
 - Air travel: LA to NY in 2 seconds (MACH 9,000)
 - Wheat yield: 900,000 bushels per acre

This Course

This course will:

- Help you understand the significance and pervasiveness of computers in today's society and economy
- Teach you how computers really operate and how they are designed
- Introduce you to concepts that students in the Computer Engineering and Computer Science degree programs learn in depth over four years
- Prepare and motivate you for study in these degree programs (CMPE, EE, CS)
- Counts towards GCR introduction to engineering requirement

Course Outline

- · Prerequisite none
- · Major topics in course
 - Introduction to computers and computing
 - Information representation and manipulation
 - Logic elements and combinational Logic
 - Sequential Logic and Memory
 - Simple computer organization, design and operation
 - Machine language and instruction set architecture
 - Assembly language
 - Programming constructs

Typical Weekly Structure

- Monday lecture Ani Sci 212
 Prepare by reading text beforehand
- On your own
 - Watch online lecture + examples
- Wed discussion
 - Individual & team quiz
 - Review
- Fri discussion
 - Quiz or applied homework
 - Review, homework help

Web Page & Syllabus

http://ece252.ece.wisc.edu Instructor & TAs Textbook Lecture Notes Discussion sections Schedule LC-3 Simulator Grading Exams Homework

Reminders/Advice

- Textbook read BEFORE corresponding lecture
- Online lectures view before discussion
 Quizzes will assume that you have
- **Homework** completed in *groups (not hw1)*
 - Will reinforce in-class coverage
 - Will help you prepare for midterm exams
- Study Groups of ~4
 - Assigned in your discussion section
 - Should meet weekly outside of discussion
 - Review material, complete homework assignments

Technology

- Technology advances at astounding rate – 19th century: attempts to build mechanical
 - computers - Early 20th century: mechanical counting systems
 - (cash registers, etc.)
 Mid 20th century: vacuum tubes as switches
 - Since: transistors, integrated circuits
- 1965: Moore's law [Gordon Moore]
 - Predicted doubling of capacity every 18 months
- Has held and will continue to hold
- Drives functionality, performance, cost
 Exponential improvement for 40 years
 - Exponential improvement for 40 years

Some History						
Date	Event	Comments				
1947	1 st transistor	Bell Labs				
1958	1 st IC	Jack Kilby (MSEE '50) @TI				
		Winner of 2000 Nobel prize				
1971	1 st microprocessor	Intel (calculator market)				
1974	Intel 4004	2300 transistors				
1978	Intel 8086	29K transistors				
1989	Intel 80486	1M transistors				
1995	Intel Pentium Pro	5.5M transistors				
2006	Intel Montecito	1.7B transistors				
201x	IBM	50B transistors				

Applications • Corollary to Moore's Law: Cost halves every two years • Computers cost-effective for • National security – weapons design • Enterprise computing – banking • Departmental computing – computer-aided design • Personal computer – spreadsheets, email, web • Smartphone – camera, calendar, email, web, games • Pervasive computing – computers everywhere • Countless industries revolutionized

Programmable Computers

- · Many computers today are embedded
 - Fixed functionality
 - Appliance-like
 - Not really programmable by end user
- Not the focus of this course!
 - Instead, programmable computers
 - Embedded/appliance computers still programmed!
 - Learn to think of computer as a programmable device
- Program?
 - Algorithm or set of steps that computer follows
 - Human brains wired to work this way

Additional Information

• Resources for Special Help

- McBurney Center alternative testing or other arrangements
- Course problem consultation: Prof. Lipasti
- Broader problem consultation: advisor or counselor

Academic Misconduct

- We really don't expect it to happen
- Please don't disappoint us
- Serious repercussions
 - Academic record, dismissal from university

Only hurting yourself and your future

Wrapping Up

Readings

- Chapter 1: Welcome Aboard
- Homework 1 on the course web site – Due Monday 9/12 in class (week after Labor day)

Schedule for next few weeks

Week	Dates	Monday	Wednesday	Friday
1	9/5,9/7,9/9	Labor Day	Ch 1 lecture AniSci 212	Ch1 discussion EHxxxx
2	9/12,9/14,9/16	Ch 2 lecture AniSci 212	Ch 2 discussion EHxxxx	Ch 2 discussion EHxxxx
3	9/19,9/21,9/23	Ch 2 lecture AniSci 212	Ch 2 discussion	Exam I review EHxxxx
4	9/26,9/28,9/30	Ch 3 lecture AniSci 212	Midterm I AniSci 212	Ch 3 discussion EHxxxx