

Introduction to Computer Engineering

ECE/CS 252, Fall 2010 Prof. Mikko Lipasti Department of Electrical and Computer Engineering University of Wisconsin - Madison

Copyright © The McGraw-Hil Companies, Inc. Permission required for reproduction or display.

Instruction Set Architecture

ISA = All of the programmer-visible components and operations of the computer

- memory organization
- > address space -- how may locations can be addressed? > addressibility -- how many bits per location?
- reaister set
- > how many? what size? how are they used?
- instruction set
- > opcodes
- data types
- addressing modes

ISA provides all information needed for someone that wants to write a program in machine language (or translate from a high-level language to machine language).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Overview: Memory and Registers

Memory

• address space: 2¹⁶ locations (16-bit addresses) addressability: 16 bits

Registers

- temporary storage, accessed in a single machine cycle
- >accessing memory generally takes longer than a single cycle • eight general-purpose registers: R0 - R7
- >each 16 bits wide
 - >how many bits to uniquely identify a register?
- other registers
 - > not directly addressable, but used by (and affected by) instructions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

> PC (program counter), condition codes

LC-3 Overview: Instruction Set Opcodes

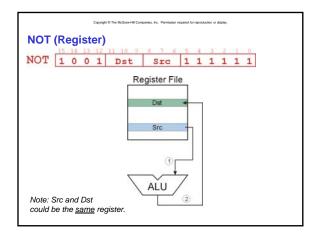
15 opcodes

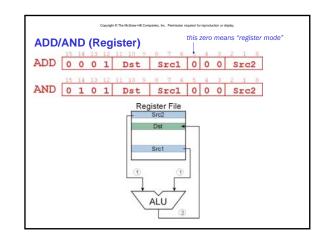
- Operate instructions: ADD, AND, NOT
- Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

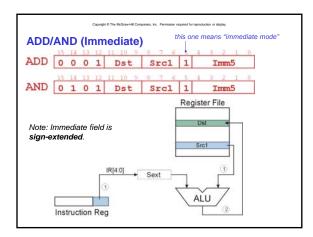
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

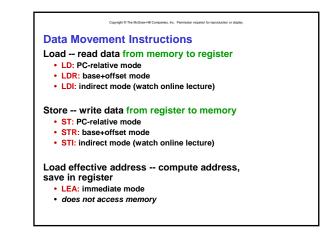
- Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result:
- > N = negative, Z = zero, P = positive (> 0)

Data Types


- · 16-bit 2's complement integer
- Addressing Modes
- · How is the location of an operand specified?
- · non-memory addresses: immediate, register
- memory addresses: PC-relative, indirect, base+offset


Operate Instructions


Only three operations: ADD, AND, NOT

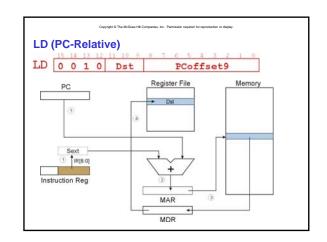

Source and destination operands are registers

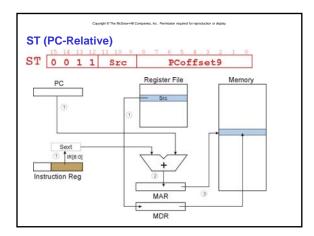
- These instructions do not reference memory.
- · ADD and AND can use "immediate" mode,
- where one operand is hard-wired into the instruction.
- Will show dataflow diagram with each instruction. illustrates <u>when</u> and <u>where</u> data moves
 - to accomplish the desired operation

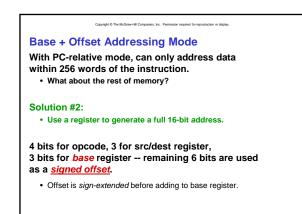
PC-Relative Addressing Mode

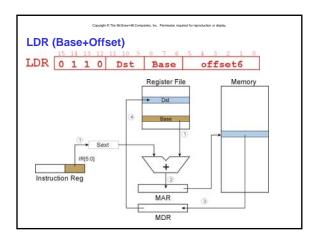
Want to specify address directly in the instruction

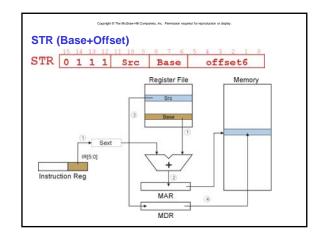
- But an address is 16 bits, and so is an instruction!
- After subtracting 4 bits for opcode and 3 bits for register, we have <u>9 bits</u> available for address.

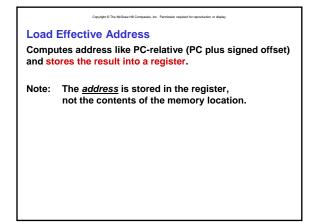

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

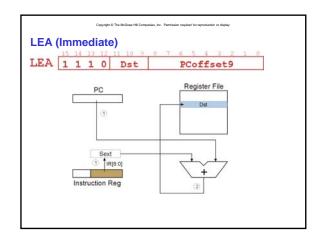

Solution:


• Use the 9 bits as a signed offset from the current PC.


9 bits: $_{-256 \,\leq\, 0ffset \,\leq\, +255}$ Can form any address X, such that: $_{PC\,-256 \,\leq\, X \,\leq\, PC \,+255}$


Remember that PC is incremented as part of the FETCH phase; This is done <u>before</u> the EVALUATE ADDRESS stage.





Address	_				Instruction	Comments
x30F6	1	1	1	0	00111111101	$R1 \leftarrow PC - 3 = x30F4$
x30F7	0	0	0	1	010001101110	$R2 \leftarrow R1 + 14 = x3102$
x30F8	0	0	1	1	010111111011	M[PC - 5] ← R2 M[x30F4] ← x3102
x30F9	0	1	0	1	010010100000	R2 ← 0
x30FA	0	0	0	1	010010100101	$R2 \leftarrow R2 + 5 = 5$
x30FB	0	1	1	1	0 1 0 0 0 1 0 0 1 1 1 0	$M[R1+14] \leftarrow R2$ $M[x3102] \leftarrow 5$
		on	cod	p		

right © The McGraw-Hill Companies, Inc. Permission required fo

TRAP

changes PC to the address of an OS "service routine"
routine will return control to the next instruction (after TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Condition Codes

LC-3 has three condition code registers:

N -- negative Z -- zero

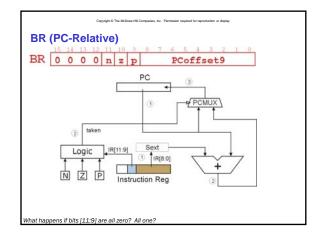
P -- positive (greater than zero)

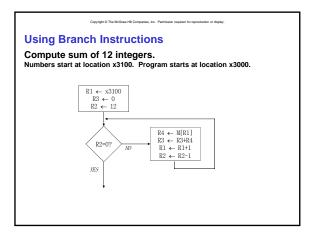
Set by any instruction that writes a value to a register (ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times

· Based on the last instruction that altered a register

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Branch Instruction


Branch specifies one or more condition codes. If the specified bit is set, the branch is taken.

- PC-relative addressing: target address is made by adding signed offset (IR[8:0]) to current PC.
- Note: PC has already been incremented by FETCH stage.
- Note: Target must be within 256 words of BR instruction.

If the branch is not taken,

the next sequential instruction is executed.

Address					Instruction	Comments
		0		••••••••		
x3001	0	1	0	1	<u>0 1 1 0 1 1</u> 1 <u>0 0 0 0 0</u>	R3 ← 0
x3002	0	1	0	1	<u>0 1 0 0 1 0 1 0 0 0 0 0</u>	R2 ← 0
x3003	0	0	0	1	0 1 0 0 1 0 1 0 1 1 0 0	R2 ← 12
x3004	0	0	0	0	$\underline{0\ 1\ 0}\ \underline{0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1}$	If Z, goto x300A (PC+5)
x 3005	0	1	1	0	$\underline{1 \ 0 \ 0} \ \underline{0 \ 0 \ 1} \ \underline{0 \ 0 \ 0 \ 0 \ 0}$	Load next value to R4
x3006	0	0	0	1	<u>0 1 1 0 1 1</u> 0 0 0 <u>1 0 0</u>	Add R4 to R3
x 3007	0	0	0	1	$\underline{0 \ 0 \ 1} \ \underline{0 \ 0 \ 1} \ 1 \ \underline{0 \ 0 \ 0 \ 0 \ 1}$	Increment R1 (pointer)
X3008	0	0	0	1	$\underline{0\ 1\ 0}\ \underline{0\ 1\ 0}\ 1\ \underline{1\ 1\ 1\ 1\ 1}$	Decrement R2 (counter)
x3009	0	0	0	0	<u>1 1 1 1 1 1 1 1 0 1 0</u>	Goto x3004 (PC-6)

	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Summary	
LC-3 Memory	and Registers
Operate instru	uctions: ADD/AND/NOT
LC-3 Address	ing modes: PC-relative, Base+Offset
Data Moveme	nt Instructions: LD/ST/LDR/STR/LEA
Control Instru	ctions: Branch
Online: additi	onal instructions, examples, LC-3 datapat