
1

Introduction to Computer
EngineeringEngineering
ECE/CS 252, Fall 2010

Prof. Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin – Madison

Chapter 6
Part I: Programming

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solving Problems using a Computer
Methodologies for creating computer programs
that perform a desired function.

Problem Solving
• How do we figure out what to tell the computer to do?

• Convert problem statement into algorithm

6-3

Convert problem statement into algorithm,
using stepwise refinement.

• Convert algorithm into LC-3 machine instructions.

Debugging
• How do we figure out why it didn’t work?

• Examining registers and memory, setting breakpoints, etc.

Time spent on the first can reduce time spent on the second!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stepwise Refinement
Also known as systematic decomposition.

Start with problem statement:
“We wish to count the number of occurrences of a character

in a file. The character in question is to be input from
the keyboard; the result is to be displayed on the monitor.”

6-4

Decompose task into a few simpler subtasks.

Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem Statement
Because problem statements are written in English,
they are sometimes ambiguous and/or incomplete.

• Where is “file” located? How big is it, or how do I know
when I’ve reached the end?

• How should final count be printed? A decimal number?

• If the character is a letter, should I count both
d l ?

6-5

upper-case and lower-case occurrences?

How do you resolve these issues?
• Ask the person who wants the problem solved, or

• Make a decision and document it.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Three Basic Constructs
There are three basic ways to decompose a task:

Task

6-6

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
condition

Subtask

Test
condition

Sequential Conditional Iterative

True

True

False
False

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential
Do Subtask 1 to completion,
then do Subtask 2 to completion, etc.

Get character
input from
keyboard

6-7

Examine file and
count the number
of characters that

match

Print number
to the screen

Count and print the
occurrences of a
character in a file

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conditional
If condition is true, do Subtask 1;
else, do Subtask 2.

file char
i ?

True False

6-8

Test character.
If match, increment

counter.
Count = Count + 1

= input?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Iterative
Do Subtask over and over,
as long as the test condition is true.

more chars False

6-9

Check each element of
the file and count the

characters that match.

Check next char and
count if matches.

to check?

True

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem Solving Skills
Learn to convert problem statement
into step-by-step description of subtasks.

• Like a puzzle, or a “word problem” from grammar school math.

What is the starting state of the system?

What is the desired ending state?

6-10

How do we move from one state to another?

• Recognize English words that correlate to three basic constructs:

“do A then do B” sequential

“if G, then do H” conditional

“for each X, do Y” iterative

“do Z until W” iterative

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Control Instructions
How do we use LC-3 instructions to encode
the three basic constructs?

Sequential
• Instructions naturally flow from one to the next,

so no special instruction needed to go

6-11

p g
from one sequential subtask to the next.

Conditional and Iterative
• Create code that converts condition into N, Z, or P.

Example:
Condition: “Is R0 = R1?”
Code: Subtract R1 from R0; if equal, Z bit will be set.

• Then use BR instruction to transfer control to the proper subtask.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for Conditional

Generate
Condition

Instruction
A

0000B

Subtask 1

? C

Subtask 1

Test
Condition

True False

Subtask 2

Exact bits depend
on condition
being tested

PC offset to
address C

6-12

C

Subtask 2

Next
Subtask

D

0000 111 D

Next
Subtask PC offset to

address D

Unconditional branch
to Next Subtask

Assuming all addresses are close enough that PC-relative branch can be used.

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for Iteration

Generate
Condition

Instruction
A

0000

B

Subtask

? C

Test
Condition

True

False

Exact bits depend
on condition
being tested

PC offset to
address C

6-13

Subtask

C
Next

Subtask

0000 111 A

Subtask

Next
Subtask

PC offset to
address A

Unconditional branch
to retest condition

Assuming all addresses are on the same page.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Counting Characters

Input a character. Then
scan a file, counting
occurrences of that

START

Initialize: Put initial values
into all locations that will be
needed to carry out this
task.

- Input a character.
- Set up a pointer to the first
location of the file that will
be scanned.
- Get the first character from

START

A

6-14

character. Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

STOP

the file.
- Zero the register that holds
the count.

STOP

Scan the file, location by
location, incrementing the
counter if the character
matches.

Display the count on the
monitor.

B

C

Initial refinement: Big task into
three sequential subtasks.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B

Scan the file, location by
l ti i ti th

B
B1

Done?

No

Yes

B

6-15

location, incrementing the
counter if the character
matches.

Test character. If a match,
increment counter. Get next
character.

B1

Refining B into iterative construct.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B1

Done?
Yes

B

B1

Done?

No

Yes

6-16

Refining B1 into sequential subtasks.

Test character. If a match,
increment counter. Get next
character.

B1
No

Get next character.

Test character. If matches,
increment counter.

B2

B3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B2 and B3

Done?

No

Yes

B2

R1 = R0?
NoYesDone?

N

Yes

6-17

R1 = M[R3]

B3

R3 = R3 + 1

R2 = R2 + 1

Get next character.

B1
No

Test character. If matches,
increment counter.

B2

B3

Conditional (B2) and sequential (B3).
Use of LC-3 registers and instructions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Last Step: LC-3 Instructions
Use comments to separate into modules and
to document your code.

Done?

No

Yes

B2

; Look at each char in file.
0001100001111100 ; is R1 = EOT?
0000010xxxxxxxxx ; if so, exit loop
; Check for match with R0

6-18

R1 = M[R3]

B3

R3 = R3 + 1

R1 = R0?

R2 = R2 + 1

NoYes

; Check for match with R0.
1001001001111111 ; R1 = -char
0001001001100001
0001001000000001 ; R1 = R0 – char
0000101xxxxxxxxx ; no match, skip incr
0001010010100001 ; R2 = R2 + 1
; Incr file ptr and get next char
0001011011100001 ; R3 = R3 + 1
0110001011000000 ; R1 = M[R3]

Don’t know
PCoffset bits until

all the code is done

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary
Creating a machine program

• Convert problem statement to algorithm

• Convert algorithm to machine code

Stepwise refinement

• Sequential construct

• Conditional construct

• Iterative construct

Mapping to LC-3 instructions

