
1

Introduction to Computer
EngineeringEngineering

ECE 252, Fall 2010

Prof. Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin – Madison

Chapter 9.2
Subroutines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Skipping Ahead to Chapter 9
You will need to use subroutines for programming
assignments

• Read Section 9.2

A subroutine is a program fragment that:
• performs a well-defined task

• is invoked (called) by another user program

7-3

() y p g

• returns control to the calling program when finished

Reasons for subroutines:
• reuse useful (and debugged!) code without having to

keep typing it in

• divide task among multiple programmers

• use vendor-supplied library of useful routines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JSR Instruction

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))

7-4

• bit 11 specifies addressing mode

 if =1, PC-relative: target address = PC + Sext(IR[10:0])

 if =0, register: target address = contents of register IR[8:6]

NOTE: TRAP instruction also “links” return address by
writing PC into R7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JSR

7-5
NOTE: PC has already been incremented
during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JSRR Instruction

Just like JSR, except Register addressing mode.
• target address is Base Register

• bit 11 specifies addressing mode

7-6

What important feature does JSRR provide
that JSR does not?

• Subroutine (target) address can be anywhere in memory

• Target address can change

• Virtual functions and function pointers

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JSRR

7-7
NOTE: PC has already been incremented
during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

RET (JMP R7)
How do we transfer control back to
instruction following the subroutine?

We saved old PC in R7.

• JMP R7 gets us back to the user program at the right spot.

C 3 RET ()

9-8

• LC-3 assembly language lets us use RET (return)
in place of “JMP R7”.

Must make sure that subroutine does not
change R7, or we won’t know where to return.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Question
Can a subroutine call another subroutine or TRAP?

If so, is there anything special the calling subroutine
t d ?

• Yes, of course

• Common in complex programs

9-9

must do?
• Make sure its return address is not “lost”

• On entry to subroutine, R7 contains its return address

• When it invokes JSR again, R7 is overwritten

• Must save R7 in memory (store) before call

• Must restore R7 from memory (load) after call

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Negate the value in R0
2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

7-10

; need to compute R4 = R1 - R3
ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Passing Information to/from Subroutines
Arguments

• A value passed in to a subroutine is called an argument.

• This is a value needed by the subroutine to do its job.

• Examples:

 In 2sComp routine, R0 is the number to be negated

 In OUT service routine, R0 is the character to be printed.

7-11

 In PUTS routine, R0 is address of string to be printed.

Return Values
• A value passed out of a subroutine is called a return value.

• This is the value that you called the subroutine to compute.

• Examples:

 In 2sComp routine, negated value is returned in R0.

 In GETC service routine, character read from the keyboard
is returned in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Subroutines
In order to use a subroutine, a programmer must know:

• its address (or at least a label that will be bound to its address)

• its function (what does it do?)

NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run

7-12

after the routine has run.

• its arguments (where to pass data in, if any)

• its return values (where to get computed data, if any)

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Saving and Restore Registers
Since subroutines are just like service routines,
we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.

• Save anything that the subroutine will alter internally

7-13

Save anything that the subroutine will alter internally
that shouldn’t be visible when the subroutine returns.

• It’s good practice to restore incoming arguments to
their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other
subroutine or service routine (TRAP).

• Otherwise, you won’t be able to return to caller.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example
(1) Write a subroutine FirstChar to:

find the first occurrence
of a particular character (in R0)
in a string (pointed to by R1);
return pointer to character or to end of string (NULL) in R2.

(2) U Fi Ch i C Ch hi h

7-14

(2) Use FirstChar to write CountChar, which:
counts the number of occurrences
of a particular character (in R0)
in a string (pointed to by R1);
return count in R2.

Can write the second subroutine first,
without knowing the implementation of FirstChar!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R1 <- R2 + 1

save R7,

7-15

R3 <- M(R2)

R3=0

restore
regs

return

no

yes

,
since we’re using JSR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CountChar Implementation
; CountChar: subroutine to count occurrences of a char
CountChar

ST R3, CCR3 ; save registers
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original string ptr
AND R4, R4, #0 ; initialize count to zero

CC1 JSR FirstChar ; find next occurrence (ptr in R2)
3 2 #0 if h ll

7-16

LDR R3, R2, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; point to next char in string
BRnzp CC1

CC2 ADD R2, R4, #0 ; move return val (count) to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4
LD R1, CCR1
LD R7, CCR7
RET ; and return

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FirstChar Algorithm

save regs

R2 <- R1

R3=R0

R2 <- R2 + 1

no

yes

7-17

R3 <- M(R2)

R3=0

restore
regs

return

no

yes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char
FirstChar

ST R3, FCR3 ; save registers
ST R4, FCR4 ; save original char
NOT R4, R0 ; negate R0 for comparisons
ADD R4, R4, #1
ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3 R2 #0 read character

7-18

FC1 LDR R3, R2, #0 ; read character
BRz FC2 ; if null, we’re done
ADD R3, R3, R4 ; see if matches input char
BRz FC2 ; if yes, we’re done
ADD R2, R2, #1 ; increment pointer
BRnzp FC1

FC2 LD R3, FCR3 ; restore registers
LD R4, FCR4 ;
RET ; and return

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary
Subroutines – why and how

JSR/JSRR/RET

Passing arguments and return values

Saving and restoring registers

7-19

