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Skipping Ahead to Chapter 9
You will need to use subroutines for programming 
assignments

• Read Section 9.2

A subroutine is a program fragment that:
• performs a well-defined task

• is invoked (called) by another user program
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• returns control to the calling program when finished

Reasons for subroutines:
• reuse useful (and debugged!) code without having to

keep typing it in

• divide task among multiple programmers

• use vendor-supplied library of useful routines
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JSR Instruction

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))
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• bit 11 specifies addressing mode

 if =1, PC-relative:  target address = PC + Sext(IR[10:0])

 if =0, register: target address = contents of register IR[8:6]

NOTE: TRAP instruction also “links” return address by 
writing PC into R7
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JSR
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NOTE: PC has already been incremented
during instruction fetch stage.
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JSRR Instruction

Just like JSR, except Register addressing mode.
• target address is Base Register

• bit 11 specifies addressing mode

7-6

What important feature does JSRR provide
that JSR does not?

• Subroutine (target) address can be anywhere in memory

• Target address can change

• Virtual functions and function pointers
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JSRR
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NOTE: PC has already been incremented
during instruction fetch stage.
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RET (JMP R7)
How do we transfer control back to
instruction following the subroutine?

We saved old PC in R7.

• JMP R7 gets us back to the user program at the right spot.

C 3 RET ( )
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• LC-3 assembly language lets us use RET (return)
in place of “JMP R7”.

Must make sure that subroutine does not 
change R7, or we won’t know where to return.
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Question
Can a subroutine call another subroutine or TRAP?

If so, is there anything special the calling subroutine
t d ?

• Yes, of course

• Common in complex programs

9-9

must do?
• Make sure its return address is not “lost”

• On entry to subroutine, R7 contains its return address

• When it invokes JSR again, R7 is overwritten

• Must save R7 in memory (store) before call

• Must restore R7 from memory (load) after call
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Example: Negate the value in R0
2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):
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; need to compute R4 = R1 - R3
ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!
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Passing Information to/from Subroutines
Arguments

• A value passed in to a subroutine is called an argument.

• This is a value needed by the subroutine to do its job.

• Examples:

 In 2sComp routine, R0 is the number to be negated

 In OUT service routine, R0 is the character to be printed.

7-11

 In PUTS routine, R0 is address of string to be printed.

Return Values
• A value passed out of a subroutine is called a return value.

• This is the value that you called the subroutine to compute.

• Examples:

 In 2sComp routine, negated value is returned in R0.

 In GETC service routine, character read from the keyboard
is returned in R0.
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Using Subroutines
In order to use a subroutine, a programmer must know:

• its address (or at least a label that will be bound to its address)

• its function (what does it do?)

NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run
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after the routine has run.

• its arguments (where to pass data in, if any)

• its return values (where to get computed data, if any)
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Saving and Restore Registers
Since subroutines are just like service routines,
we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.

• Save anything that the subroutine will alter internally
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Save anything that the subroutine will alter internally
that shouldn’t be visible when the subroutine returns.

• It’s good practice to restore incoming arguments to 
their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other
subroutine or service routine (TRAP).

• Otherwise, you won’t be able to return to caller.
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Example
(1) Write a subroutine FirstChar to:

find the first occurrence
of a particular character (in R0) 
in a string (pointed to by R1); 
return pointer to character or to end of string (NULL) in R2.

(2) U Fi Ch i C Ch hi h
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(2) Use FirstChar to write CountChar, which:
counts the number of occurrences 
of a particular character (in R0) 
in a string (pointed to by R1);
return count in R2.

Can write the second subroutine first, 
without knowing the implementation of FirstChar!
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CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R1 <- R2 + 1

save R7,
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R3 <- M(R2)

R3=0

restore
regs

return

no

yes

,
since we’re using JSR
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CountChar Implementation
; CountChar: subroutine to count occurrences of a char
CountChar

ST R3, CCR3 ; save registers
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original string ptr
AND R4, R4, #0 ; initialize count to zero

CC1 JSR FirstChar ; find next occurrence (ptr in R2)
3 2 #0 if h ll
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LDR R3, R2, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; point to next char in string
BRnzp CC1

CC2 ADD R2, R4, #0 ; move return val (count) to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4
LD R1, CCR1
LD R7, CCR7
RET ; and return
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FirstChar Algorithm

save regs

R2 <- R1

R3=R0

R2 <- R2 + 1

no

yes
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R3 <- M(R2)

R3=0

restore
regs

return

no

yes
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FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char
FirstChar

ST R3, FCR3 ; save registers
ST R4, FCR4 ; save original char
NOT R4, R0 ; negate R0 for comparisons
ADD R4, R4, #1
ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3 R2 #0 read character
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FC1 LDR R3, R2, #0 ; read character
BRz FC2 ; if null, we’re done
ADD R3, R3, R4 ; see if matches input char
BRz FC2 ; if yes, we’re done
ADD R2, R2, #1 ; increment pointer
BRnzp FC1

FC2 LD R3, FCR3 ; restore registers
LD R4, FCR4 ; 
RET ; and return
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Summary
Subroutines – why and how

JSR/JSRR/RET

Passing arguments and return values

Saving and restoring registers
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