
1

ECE/CS 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Mikko Lipasti & Prof. Gurindar S. Sohi

TAs: Felix Loh, Daniel Chang, Philip Garcia, Sean Franey, Vignyan Kothinti Naresh, Raghu Raman

and Newsha Ardalani

Midterm Examination 3

In Class (50 minutes)

Friday, November 19, 2010

Weight: 12.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 7 pages, including one page for the LC3 Instruction Set and two blank pages at the end.

Plan your time carefully, since some problems are longer than others. You must turn in pages 1 to 7.

LAST NAME: ______________________Solution Key___________________________

FIRST NAME: ___

SECTION: ___

ID# ___

2

Problem Maximum Points Actual Points

1 3

2 4

3 2

4 5

5 2

6 5

7 4

Total 25

3

Problem 1 (3 Points)

How would you implement the following operation in LC3?

 R4 = R1 NOR R2

Write the machine code (binary 16 bit instructions) in the space below.

 NOT R1, R1 1001 001 001 111 111

 NOT R2,R2 1001 010 010 111 111

 AND R4,R1,R2 0101 100 001 000 010

Problem 2 (4 points)

Explain by providing brief definitions of both, the difference between:

I. Data errors and logic errors

 Must mention:

a. Data errors: data is incorrect/unexpected

b. Logic errors: program is logically wrong -AND/OR- results/program don't match problem

statement

II. Breakpoints and Watchpoints

 Must provide differences that mention (1 point each):

a. Breakpoint stops execution at a specified instruction

b. Watchpoint stops when specified register or mem location changes

Problem 3 (2 points)

If the number of registers in LC3 is doubled, while leaving the instruction size unchanged at 16 bits, what
would be the effect, if any, on:

 1. The range of values for the ADD immediate instruction:

 They can say:

 range decreased to -4 to 3

 -OR-

 range is 8

 2. The range of addresses a JUMP instruction can have

No Change

4

Problem 4 (5 points)

The program below performs multiplication via repeated addition on registers R1 and R2 and stores the result in

R0 (i.e. R0 ← R1 * R2). Enter the missing machine language instructions and comments to complete the code (all

lines should be commented).

Address ISA Instruction
x3000 0101 0000 0010 0000 ; Clear R0

x3001 0001 0010 0110 0000 ; R1 ← R1 + 0

x3002 0000 0100 0000 0011 ; BRz x3006

x3003 0001 0000 0000 0010 ; R0 ← R0 + R2

x3004 0001 0010 0111 1111 ; Decrement R1 (R1 ← R1 + -1)

x3005 0000 0011 1111 1101 ; BRp x3003

X3005(alt) 0000 1111 1111 1100 ; BRnzp x3002

x3006 1111 0000 0010 0101 ; TRAP

Note: 2 possible correct answers for x3005

Problem 5 (2 points)

Consider the following two snippets of LC3 code which achieve the same function:

1.

Address ISA Instruction

x3000 1010 1010 0000 0001 ; LDI R5, #1

2.

Address ISA Instruction

x3000 0010 1000 0000 0001 ; LD R4, #1

x3001 0110 1011 0000 0000 ; LDR R5, R4, #0

With the following memory contents:

Give

at

least

one

advantage of using (1) over (2)?

 Acceptable Answers (only 1 required): More compact, Fewer Registers used

Give at least one advantage of using (2) over (1)?

 Acceptable Answers: More flexible because of the offset

Address Data

x3002 x3003

x3003 x007F

5

Problem 6 (5 points)

The flow chart below is for a program that performs an insertion of one element into a list of elements that are

sorted in ascending order (i.e. smallest element is at the base address); the element to be inserted is stored in

register R0. Briefly, the program works as follows:

With the element to be inserted in R0, the first element of the list is loaded into R1 to be inspected. If R0 is greater

than this element, nothing is done and the next element is brought into R1 and inspected. Once R0 is not greater

than the element being inspected,

it is inserted in that element's memory location. The program then moves the current element to R0. This makes

that element the element to be inserted in the remainder of the list and the algorithm continues until the end of

the list is reached. The effect is that each subsequent element (after the first insertion) is shifted down by one

location.

Address Initial Value Final Value

x3100 x001 x001

x3101 x003 x003

x3102 x005 x004

x3103 x008 x005

x3104 x009 x008

x3105 unknown x009

Fill in the five missing pieces to complete the chart. Remember, R0 contains the element to be inserted.

6

Problem 7 (4 points)

We are about to execute the following program:

Address ISA Instruction
x3000 1110 0000 0001 0100 ; LEA R0, x014

x3001 0010 0010 0001 0100 ; LD R1, x014

x3002 0110 0100 0000 0010 ; LDR R2, R0, x02

x3003 1010 0110 0001 0001 ; LDI R3, x011

x3004 1111 0000 0010 0101 ; HALT

The state of the machine before the program starts is given below:

Memory Address Memory Contents

x3010 x9876

x3011 x3258

x3012 x0000

x3013 x4567

x3014 x3017

x3015 x3018

x3016 x92FE

X3017 x92FF

x3018 x0020

x3019 x1220

x301A x0001

What will be the final contents of registers R0-R3 when we reach the HALT instruction? Write your answers in

hexadecimal format.

(“NOTE” for R2 indicates correct answers based on mistakes made assigning R0)

Register Initial contents Final contents

R0 x200E x3015

R1 x200E x92FE

R2 x3001 x92FF

NOTE: if

R0=x3014 => x92FE

R0=x3017 => x1220

R0=x3018 => x0001

R3 x3001 x0020

7

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

