Homework 5 Fall 2011 Solution

Problem 1 (4 Points):

PC - 32 bits
PC contains the address of the NEXT instruction to fetch.
MAR contains the address in memory that is to be read or written
These two registers work by having the contents of PC placed into the MAR so the address in memory containing an instruction can be loaded

IR - 64 bits
IR - contains the instruction that is currently being executed
MDR contains data that is to be read/written from/to memory
During a fetch cycle the contents of memory is placed into the MDR and then placed into the IR so it can be executed

Problem 2 (6 points):

1)

x4400 AND R3, R3, \#0
x4401 ADD R3, R3, R1
x4402 ADD R2, R2, \#-1
x4403 BRp 0x4401 <-3>

2)

Assume the contents of R1 are 2 and R2 is 2, the student can enter any value:
$\mathrm{R} 1=2$
$\mathrm{R} 2=2$
Start:
X 4400 : R1 $=2, \mathrm{R} 2=2, \mathrm{R} 3=0, \mathrm{CC}=\mathrm{Z}$
$\mathrm{X} 4401: \mathrm{R} 1=2, \mathrm{R} 2=2, \mathrm{R} 3=2, \mathrm{CC}=\mathrm{P}$
X 4402 : $\mathrm{R} 1=2, \mathrm{R} 2=1, \mathrm{R} 3=2, \mathrm{CC}=\mathrm{P}$
$\mathrm{X} 4401: \mathrm{R} 1=2, \mathrm{R} 2=1, \mathrm{R} 3=4, \mathrm{CC}=\mathrm{P}$
X 4402 : $\mathrm{R} 1=2, \mathrm{R} 2=0, \mathrm{R} 3=4, \mathrm{CC}=\mathrm{Z}$
END

For a solution there will be R2 loops, or branches.
3)

This algorithm performs a multiply operation: R3 \leftarrow R1xR2

Problem 3 (5 points):

First convert the binary to assembly:

```
0x30FF LEA R1, 0x1
0x3100 LDR R2, R1, 0x2
0x3101 TRAP 0x25 ;HALT, look at page 543
0x3102 ADD R2, R1, R1
0x3103 ADD R2, R2, R2
0x30FF }\quad\textrm{R}1\leftarrow\textrm{PC}+0\textrm{x}1=0x3100+0x1=0x310
0x3100 R2 \leftarrow mem[R1 + 0x2] = mem[3103] - R2 \leftarrow00010100 10000010
0x3101 Program halts, so R2 contain the data at 0x3103
```

R2 contains 0001010010000010 , or 0×1482, or ADD R2, R2, R2

Problem 4 (5 points):

First, write the assembly of this:

```
0x3100 LEA R1, 32(0x20)
0x3101 LD R2, 32(0x20)
0x3102 LDI R3, 32(0x20)
0x3103 LDR R4, R2, 1(0x1)
0x3104 TRAP 0x25 ;HALT, look at page 543
0x3122 0x4566
0x3123 0x4567
0x4567 0xABCD
0x4568 0xFED3
```

Look at contents:

0×3100	$\mathrm{R} 1 \leftarrow 0 \times 3101+0 \times 20=0 \times 3121$
0×3101	$\mathrm{R} 2 \leftarrow \operatorname{mem}[\mathrm{PC}+0 \times 20]=\operatorname{mem}[0 \times 3102+0 \times 20]=\operatorname{mem}[0 \times 3122]=0 \times 4566$
0×3102	$\mathrm{R} 3 \leftarrow \operatorname{mem}[\operatorname{mem}[\mathrm{PC}+0 \times 20]]=\operatorname{mem}[\operatorname{mem}[3123]]=\operatorname{mem}[0 \times 4567]=0 \times A B C D$
0×3103	$\mathrm{R} 4 \leftarrow \operatorname{mem}[\mathrm{R} 2+0 \times 1]=\operatorname{mem}[0 \times 4566+0 \times 1]=\operatorname{mem}[0 \times 4567]=0 \times \mathrm{ABCD}$

So:
$\mathrm{R} 1 \leftarrow 0 \times 3121$
$\mathrm{R} 2 \leftarrow 0 \mathrm{x} 4566$
R3 $\leftarrow 0 x A B C D$
$\mathrm{R} 4 \leftarrow 0 \mathrm{xABCD}$

Problem 5 (4 points):

Students are free to pick which registers they want.
a) Assume a move from R2 to R1:

AND R1, R2, 0xFFFF
or ADD R1, R2, 0x0
b) Clear R1:

AND R1, R1, 0x0
c) Shift contents of R1 to the left by one bit, same as multiplying by 2 : ADD R1, R1, R1
d) (AND R1, R1, R1) or (AND R1, R1, 0xFFFF) or (ADD R1, R1, 0x0) There could be other answers as well.

Problem 6 (6 points):

Students should have the HEX value of their initials entered starting at address 0×3000.

