Homework 5 Fall 2011 Solution

Problem 1 (4 Points):

PC – 32 bits

PC contains the address of the NEXT instruction to fetch. MAR contains the address in memory that is to be read or written These two registers work by having the contents of PC placed into the MAR so the address in memory containing an instruction can be loaded

IR – 64 bits

IR – contains the instruction that is currently being executed MDR contains data that is to be read/written from/to memory During a fetch cycle the contents of memory is placed into the MDR and then placed into the IR so it can be executed

Problem 2 (6 points):

1) x4400 AND R3, R3, #0 x4401 ADD R3, R3, R1 x4402 ADD R2, R2, #-1 x4403 BRp 0x4401 <-3>

2)

Assume the contents of R1 are 2 and R2 is 2, the student can enter any value:

R1 = 2R2 = 2

Start: X4400: R1=2, R2=2, R3=0, CC=Z X4401: R1=2, R2=2, R3=2, CC=P X4402: R1=2, R2=1, R3=2, CC=P

X4401: R1=2, R2=1, R3=4, CC=P X4402: R1=2, R2=0, R3=4, CC=Z

END

For a solution there will be R2 loops, or branches.

3)

This algorithm performs a multiply operation: $R3 \leftarrow R1xR2$

Problem 3 (5 points):

First convert the binary to assembly:

0x30FF 0x3100 0x3101 0x3102 0x3103	LEA R1, 0x1 LDR R2, R1, 0x2 TRAP 0x25 ADD R2, R1, R1 ADD R2, R2, R2	;HALT, look at page 543		
0x30FF	R1 \leftarrow PC + 0x1 = 0x3100 + 0x1 = 0x3101			
0x3100	R2 \leftarrow mem[R1 + 0x2] = mem[3103] - R2 \leftarrow 0001 0100 1000 0010			
0x3101	Program halts, so R2 contain the data at 0x3103			

R2 contains 0001 0100 1000 0010, or 0x1482, or ADD R2, R2, R2

Problem 4 (5 points):

First, write the assembly of this:

0x3100 0x3101 0x3102 0x3103 0x3104	LEA R1, 32(0x20) LD R2, 32(0x20) LDI R3, 32(0x20) LDR R4, R2, 1(0x1) TRAP 0x25 ;HALT, look at page 543
	IKAP 0x25 ,HAL1, 100k at page 345
0x3122	0x4566
0x3123	0x4567
0x4567	0xABCD
0x4568	0xFED3
Look at conte	nte
	$R1 \leftarrow 0x3101 + 0x20 = 0x3121$
0x3100	
0x3101	$R2 \leftarrow mem[PC + 0x20] = mem[0x3102 + 0x20] = mem[0x3122] = 0x4566$
0x3102	$R3 \leftarrow mem[mem[PC+0x20]]=mem[mem[3123]]=mem[0x4567]=0xABCD$
0x3103	$R4 \leftarrow mem[R2+0x1] = mem[0x4566+0x1] = mem[0x4567] = 0xABCD$

So:

 $R1 \leftarrow 0x3121$ $R2 \leftarrow 0x4566$ $R3 \leftarrow 0xABCD$ $R4 \leftarrow 0xABCD$

Problem 5 (4 points):

Students are free to pick which registers they want.

- a) Assume a move from R2 to R1: AND R1, R2, 0xFFFF or ADD R1, R2, 0x0
- b) Clear R1: AND R1, R1, 0x0
- c) Shift contents of R1 to the left by one bit, same as multiplying by 2: ADD R1, R1, R1
- d) (AND R1, R1, R1) or (AND R1, R1, 0xFFFF) or (ADD R1, R1, 0x0) There could be other answers as well.

Problem 6 (6 points):

	Next						
	NEXL	Step		Continue	Stop		Suspende
							=
egister	rs		Me	mory			
0 x0	0000 R6	x0000	BF	Address	Value	Instruction	
	0000 R7	x0000		X2FEE	x0000	FILL X0000	
		x3000		x2FEF	x0000	.FILL x0000	
		x0000		x2FF0	x0000	.FILL x0000	
4 x0	0000 PSR	x8002		x2FF1	x0000	.FILL x0000	
5 x0	0000 CC	Z		x2FF2	x0000	.FILL x0000	
	10	×		x2FF3	x0000	.FILL x0000	
vices	;			x2FF4	x0000	.FILL x0000	
				x2FF5	x0000	.FILL x0000	
				x2FF6	x0000	.FILL x0000	
				x2FF7	x0000	.FILL x0000	
				x2FF8	x0000	.FILL x0000	
				x2FF9	x0000	.FILL x0000	
				x2FFA	x0000	.FILL x0000	
				x2FFB	x0000	.FILL x0000	
				x2FFC	x0000	.FILL x0000	
			1	x2FFD	x0000	.FILL x0000	
			1	x2FFE	x0000	.FILL x0000	
				1x2EEE	×0000	EILL x0000	
			500	x3000	x524A	.FILL x524A	
			500	x3001	x0000	.FILL x0000	
			5.5	x3002	x0000	.FILL x0000	
			5.5	x3003	x0000	.FILL x0000	
			5.5	x3004	x0000	.FILL x0000	
			515	x3005	x0000	.FILL x0000	
			5.5	x3006	x0000	.FILL x0000	
			500	x3007	x0000	.FILL x0000	
			5.5	x3008	x0000	.FILL x0000	
			5.5	x3009	x0000	.FILL x0000	
				X300A	x0000	FILL x0000	

Students should have the HEX value of their initials entered starting at address 0x3000.