

ECE/CS 252 Fall 2011 Homework 7 (25 points) // Due

in Lecture on Nov. 30, 2011 (Wed)

Instructions:
1. Do this homework in groups. Individual homework will be penalized. Hand in one copy per

group.

2. You should do this homework with your assigned groups. Write all the names and WiscIDs of

the group members.

3. Staple all the answer sheets together to receive full credit.

4. Problem 1 should be submitted in lecture on Nov 30 and Problem 2 should be submitted in

Dropbox by Nov 30 (11.59 pm). Only one person from each group should upload the file.

5. First point of contact for clarification on the questions: Ripudaman Singh (rsingh27@wisc.edu).

Contact any TA if you need help on how to get started on a problem.

Problem 1. (2 + 3 + 2 points)

Here is a small program to add numbers starting at address labeled as DATA and the number of

numbers to be added is given at address labeled as NUM. The program stores the result at location

labeled as RESULT.

Output expected (in memory location RESULT): 6

.ORIG x3000

 AND R0, R0, #0

 LD R3, NUM

 LEA R1, DATA

 LDR R2, R1, #0

LOOP: BRz DONE

 ADD R0, R2, R0

 ADD R1, R1, #1

 LDR R2, R1, #0

 ADD R3, R3, #-1

 BR LOOP

RESULT: .FILL x0000

NUM: .FILL x0004

DATA: .FILL x0000

 .FILL x0001

 .FILL x0002

 .FILL x0003

DONE: ST R0, RESULT

 HALT

 .END

(a) Write the symbol table created by the assembler on the first pass of the above program.

(b) Once the symbol table is created, the assembler then creates a binary version (.obj) of the

program. Convert the above program into machine code.

 (c) The code doesn’t function as it should. Your job is to debug and fix it. Please explain why it

does not work and what needs to be done in order to make it work as expected. You don’t need to

turn-in full corrected program.

Problem 2. (5+8+5 points)

Building up on work completed in HW6, we will display a full string in this homework and then

also wrap it around when all the characters have gone past the left end.

In this homework your task is to:

1. Write a subroutine to get starting address of bitmap for a given character

2. Use the above subroutine to display a string given to you (only a few characters will show

up on screen at a time).

3. Implement circular scrolling i.e. once the characters have gone out from the left side, they

should start appearing from the right. Circular Scrolling should be done 5 times.

The details of tasks are:

1. For first task, you have to write a subroutine CALC_BITMAP_ADDRESS that takes in

ASCII value of a character (in R1) and the address from where the bitmap starts (in R0).

The subroutine should return the starting address of bitmap corresponding to the character

given as input in R1. Output register is R0 as well i.e. return value should be contained in

R0. You should save and restore the registers before using but not all (why?). This is similar

to what was done in Applied Exercise 4.

Bitmaps of the characters have similar format as in previous homework. This time you are

given bitmaps of all alphabets in capital letters i.e. A-Z (ASCII 65-90) in hw7_bitmap.asm.

Again, the bitmaps start from address 0x5000 (available in BITMAP_START memory

location). You don’t need to make any change to this file for this homework. Remember that

bitmap of each character takes 49 entries (available in BITMAP_INCR memory location).

2. For second task, you are given a string starting at address 0x4E00. This address is stored in

label STRING in hw7.asm. The String is given in hw7_string.asm. This has been given for

your ease and testing of your program. This string will be replaced by some random string

while grading and hence, you should not hard-code the characters.

The string will contain characters A-Z (ASCII 65-90) and space (ASCII 32) and you can

assume that no characters other than mentioned above will be entered. Further assume that

there will be at least one character in the string. The length of string may vary but will be

null-terminated. Therefore 0x0 or null character will determine when your string ends.

You are also provided with DRAW_CHAR subroutine that implements the logic for

displaying a character that you implemented in previous homework. This subroutine takes in

x-coordinate (in R0), y-coordinate (in R1) and starting address of the bitmap of character (in

R2) that is to be displayed. When the subroutine returns, all the registers will have same

value as prior to calling of the subroutine (You can confirm this by looking at the part of

code where values in registers are stored to memory locations at the start of subroutine and

loaded back to registers before returning). There is no output value of this subroutine.

This task can be broken down in small parts. You should read one character from the string,

calculate the bitmap address using CALC_BITMAP_ADDRESS subroutine and then use

DRAW_CHAR subroutine for displaying the character if it is not space and repeat the

process till you encounter 0x0 or null character. The STRING_INDEX memory location

tracks the number of characters already drawn. The flowchart later will explain this better.

For simplicity, you have to iterate through all the characters in string and not worry about

how many characters are being displayed on screen at any given moment.

 This task requires you to fill in code in STRING_LOOP. The coordinates are tracked in

memory locations LOCAL_X and LOCAL_Y which represent the starting (x,y) coordinate

of the current character in the string. You can use these values to set up arguments before

calling the respective subroutines.

3. Now once you have drawn the string, you need to implement circular scrolling. Since the

display is quite small, we can have only 4 characters being displayed at any given time.

Hence, scrolling is necessary to read the full string. Once the whole string is displayed, the

characters should wrap and should start appearing at the right. Here, you need to come up

with the condition for wrap. This task requires you to complete SCROLL_LOOP.

As in previous homework, you need to make use of global X-coordinate (being tracked in

GLOBAL_X memory location) that determines the start of the string for any particular

iteration of Scroll loop. This coordinate is decremented by 1 after each iteration of the scroll

loop. For displaying the characters from right, global X-coordinate should be reset to

maximum X-coordinate (i.e. 31) (available in X_MAX memory location) and then again it

should be decremented by 1 till it’s the time to wrap again. The condition for wrap

essentially is the answer to question: when should global X be set to 31? Following figure

shows the use of global X coordinate when 2 characters A and C were being displayed.

Dotted character won’t be displayed since they are out-of-range of the display region. Note

that wrap happens after all the characters in string have moved out of display region.

The scroll loop should end after 5 such wraps. Memory location labeled

WRAP_COUNTER tracks the number of wraps being done. For ease of understanding the

intent and flow of program, flow chart is given on next page.

Remember to load lc3os_mod, hw7_bitmap, hw7_string programs into LC3 before you test

your program.

Initialize STRING_INDEX

to 0

Start

Initialize Display Buffer

Initialize GLOBAL_X

memory location to

X_START

TODO (task 3): Set

WRAP_COUNTER

to 5

Scroll_loop starts: Clear

Display Area (on start of

iteration)

Set x-coordinate for first

character (i.e. LOCAL_X) to

GLOBAL_X

Set y-coordinate for first

character (i.e. LOCAL_Y)

to Y_START (i.e. 6)

TODO (task 2): Is

CHARACTER = 0x0?

String_loop starts:

TODO (task 2): Is

Character = space?

Load GLOBAL_X, Update

Global_X i.e. decrement

by 1 and store back

Is WRAP LOOP

COUNTER > 0?

Small delay

Get first char of string in R1

Done

Load Address of string in

R4

TODO (task 2): Setup

arguments for

CALC_BITMAP_ADDR

subroutine: Load

BITMAP_START in R0;

Character in R1

TODO (task 2): Use

CALC_BITMAP_ADDR

(written in task 1) to get the

starting address of bitmap

of char returned in R0

TODO (task 2): Call

DRAW_CHAR routine to

display the character

TODO (task 2): Setup

arguments for

DRAW_CHAR subroutine:

Load LOCAL_X in R0;

LOCAL_Y in R1;

Bitmap of character in R2

TODO (task 2): Get next

char in string (using

STRING_INDEX) in R1

TODO (task 2): Update x

(i.e. LOCAL_X) and y (i.e.

LOCAL_Y) for next char

TODO (task 2): Read String

Index from memory, Update

the index and Store back

TODO (task 3): Load

GLOBAL_X from

memory, set it to X_MAX

and store back

TODO (task 3): Load

WRAP_COUNTER from

memory, Update and

Store Back

TODO (task 3):

Do we have to

wrap now?

Yes

Yes

No

Yes

No

Yes
No No

