ECE/CS 252: INTRODUCTION TO COMPUTER ENGINEERING
 UNIVERSITY OF WISCONSIN—MADISON

Prof. Mikko Lipasti \& Prof. Gurindar S. Sohi
TAs: Felix Loh, Daniel Chang, Philip Garcia, Sean Franey, Vignyan Kothinti Naresh, Raghu Raman and Newsha Ardalani

Midterm Examination 3
In Class (50 minutes)
Friday, November 19, 2010
Weight: 12.5\%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 8 pages, including one page for the LC3 Instruction Set and two blank pages at the end.
Plan your time carefully, since some problems are longer than others. You must turn in pages 1 to 7.

LAST NAME:
FIRST NAME:
SECTION:
ID\#

Problem	Maximum Points	Actual Points
1	3	
2	4	
3	2	
4	5	
7	5	
7	25	
$70 t a l$		

Problem 1 (3 Points)

How would you implement the following operation in LC3?
R4 = R1 NOR R2

Write the machine code (binary 16 bit instructions) in the space below. Adding comments to each machine language instruction will assist in awarding partial credit.

Problem 2 (4 points)

Explain by providing brief definitions of both, the difference between:
I. Data errors and logic errors
II. Breakpoints and watchpoints

Problem 3 (2 points)

If the number of registers in LC3 is doubled, while leaving the instruction size unchanged at 16 bits, what would be the effect, if any, on:

1. The range of values for the ADD immediate instruction:
2. The range of addresses a JMP instruction can have

Problem 4 (5 points)

The program below performs multiplication via repeated addition on registers R1 and R2 and stores the result in $R 0$ (i.e. $R 0 \leftarrow R 1$ * R2). Enter the missing machine language instructions and comments to complete the code (all lines should be commented).

| Address | ISA Instruction |
| :--- | :--- | :--- |
| $x 3000$ | $0101000000100000 ;$ Clear R0 |
| $x 3001$ | $0001001001100000 ;$ R1 \leftarrow R1 +0 |
| $x 3002$ | $0000010000000011 ;$ BRz x3006 |
| x3003 | $0001000000000010 ;$ |
| x3004 | |
| x3005 | |
| x3006 | $1111000000100101 ;$ TRAP |

Problem 5 (2 points)

Consider the following two snippets of LC3 code which achieve the same function:
1.

Address	ISA Instruction
x3000	$1010101000000001 ;$ LDI R5, \#1

2.

Address	ISA Instruction
x3000	$0010100000000001 ;$ LD R4, \#1
x3001	$0110101100000000 ;$ LDR R5, R4, \#0

With the following memory contents:

Address	Data
x3002	x3003
x3003	x007F

Give at least one advantage of using (1) over (2)?

Give at least one advantage of using (2) over (1)?

Problem 6 (5 points)

The flow chart below is for a program that performs an insertion of one element into a list of elements that are sorted in ascending order (i.e. smallest element is at the base address); the element to be inserted is stored in register RO. Briefly, the program works as follows:

With the element to be inserted in R0, the first element of the list is loaded into R1 to be inspected. If R0 is greater than this element, nothing is done and the next element is brought into R1 and inspected. Once R0 is not greater than the element being inspected, it is inserted in that element's memory location. The program then moves the current element to RO. This makes that element the element to be inserted in the remainder of the list and the algorithm continues until the end of the list is reached. The effect is that each subsequent element (after the first insertion) is shifted down by one location.

Address	Initial Value	Final Value
$x 3100$	$x 001$	$x 001$
$x 3101$	$x 003$	$x 003$
$x 3102$	$x 005$	$x 004$
$x 3103$	$x 008$	$x 005$
$x 3104$	$x 009$	$x 008$
$x 3105$	unknown	$x 009$

Fill in the five missing pieces to complete the chart. Remember, RO contains the element to be inserted.

Problem 7 (4 points)

We are about to execute the following program:

Address	ISA Instruction								
x3000	1110	0000	0001	0100	;	LEA	R0,	x 0	
x3001	0010	0010	0001	0100	;	LD	R1	x01	
x3002	0110	0100	0000	0010	;	LDR	R2	R0	$\times 02$
x3003	1010	0110	0001	0001	;	LDI	R3	x01	
x3004	1111	0000	0010	0101	;	HALT			

The state of the machine before the program starts is given below:

Memory Address	Memory Contents
x3010	x9876
x3011	x3258
x3012	x0000
x3013	x4567
x3014	x3017
x3015	x3018
x3016	x92FE
x3017	x92FF
x3018	x0020
x3019	x1220
x301A	x0001

What will be the final contents of registers RO-R3 when we reach the HALT instruction? Write your answers in hexadecimal format.

Register	Initial contents	Final contents
R0	$x 200 E$	
R1	$x 200 E$	
R2	$x 3001$	
R3	$x 3001$	

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

