

Department of Electrical and Computer Engineering University of Wisconsin – Madison

Review: Unsigned In An <i>n</i> -bit unsigned integ from 0 to 2 ⁿ -1.	nteç Ier r	gers epre	s (cont.) esents 2 ⁿ values:	
2 ²	2 ¹	2 ⁰	1	
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	
			2-4	ţ

rtion or display

Copyright @ The McGraw-Hill Companies, Inc. Permission requ

Two's Complement	
Problems with sign-magning	tude and 1's complement
two representations of zero	o (+0 and –0)
 arithmetic circuits are com Adding a pogativo num 	plex
Need to "correct" result t	to account for borrowing
Two's complement represer	ntation developed to make
circuits easy for arithmetic	-
on ours casy for antimetic	<i>.</i>
 for each positive number (X such that X + (-X) = 0 with " 	2. X), assign value to its negative (-X), "pormal" addition, ignoring carry out
 for each positive number () such that X + (-X) = 0 with " 	:. X), assign value to its negative (-X), "normal" addition, ignoring carry out
 for each positive number (2 such that X + (-X) = 0 with " 00101 (5) 	μ X), assign value to its negative (-X), "normal" addition, ignoring carry out 01001 (9)
 for each positive number () such that X + (-X) = 0 with ' 00101 (5) + 11011 (-5) 	z. X), assign value to its negative (-X), "normal" addition, ignoring carry out 01001 (9) + 10111 (-9)
• for each positive number () such that X + (-X) = 0 with ' 00101 (5) + 11011 (-5) 00000 (0)	2. X), assign value to its negative (-X), "normal" addition, ignoring carry out 01001 (9) + <u>10111</u> (-9) 00000 (0)
• for each positive number (such that X + (-X) = 0 with $^{\circ}$ 00101 (5) + 11011 (-5) 00000 (0)	2. X), assign value to its negative (-X), "normal" addition, ignoring carry out 01001 (9) + <u>10111</u> (-9) 00000 (0)

2-22