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Review: Unsigned Integers

Weighted positional notation
• like decimal numbers: “329”

• “3” is worth 300, because of its position, while “9” is only worth 9

2-3

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant
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Review: Unsigned Integers (cont.)
An n-bit unsigned integer represents 2n values:
from 0 to 2n-1.

22 21 20

0 0 0 0

0 0 1 1

0 1 0 2

2-4

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7
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Review: Unsigned Binary Arithmetic
Base-2 addition – just like base-10!

• add from right to left, propagating carry

10010 10010 1111
+ 1001 + 1011 + 1

carry
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11011 11101 10000

10111
+ 111

11110
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New: Signed Integers
With n bits, we have 2n distinct values.

• assign about half to positive integers (1 through 2n-1)
and about half to negative (- 2n-1 through -1)

• that leaves two values: one for 0, and one extra

Positive integers
• just like unsigned – zero in most significant bit
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00101 = 5

Negative integers
• sign-magnitude – set top bit to show negative, 

other bits are the same as unsigned
10101 = -5

• one’s complement – flip every bit to represent negative
11010 = -5

• in either case, MS bit indicates sign: 0=positive, 1=negative
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Two’s Complement
Problems with sign-magnitude and 1’s complement

• two representations of zero (+0 and –0)
• arithmetic circuits are complex

Adding a negative number => subtraction
Need to  “correct” result to account for borrowing

Two’s complement representation developed to make

2-7

Two s complement representation developed to make
circuits easy for arithmetic.

• for each positive number (X), assign value to its negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring carry out

00101 (5) 01001 (9)

+ 11011 (-5) + 10111 (-9)

00000 (0) 00000 (0)
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Two’s Complement Representation
If number is positive or zero,

• normal binary representation, zeroes in upper bit(s)

If number is negative,
• start with positive number

• flip every bit (i.e., take the one’s complement)

• then add one

2-8

00101 (5) 01001 (9)

11010 (1’s comp) 10110 (1’s comp)

+ 1 + 1
11011 (-5) 10111 (-9)
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Two’s Complement Shortcut
To take the two’s complement of a number:

• copy bits from right to left until (and including) the first “1”

• flip remaining bits to the left

011010000 011010000
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100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)
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Two’s Complement Signed Integers
MS bit is sign bit – it has weight –2n-1.

Range of an n-bit number: -2n-1 through 2n-1 – 1.
• The most negative number (-2n-1) has no positive counterpart.

-23 22 21 20

0 0 0 0 0

-23 22 21 20

1 0 0 0 -8
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0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1
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Converting 2’s Complement to Decimal
1. If leading bit is one, take two’s 

complement to get a positive number.

2. Add powers of 2 that have “1” in the
corresponding bit positions.

3. If original number was negative,
add a minus sign.

n 2n

0 1

1 2

2 4

3 8

2-11

add a minus sign.
4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Assuming 8-bit 2’s complement numbers.

X = 11100110two 

-X = 00011010
= 24+23+21 = 16+8+2
= 26ten

X = -26ten
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Converting Decimal to Binary (2’s C)
1. Change to positive decimal number.

2. Use either repeated division by 2 or repeated 
subtraction of powers of two

3. Append a zero as MS bit;
if original was negative, take two’s complement.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

2-12

X = -104ten 104 - 64 = 40 bit 6
40 - 32 = 8 bit 5

8 - 8 = 0 bit 3

01101000two

X = 10011000two

7 128

8 256

9 512

10 1024
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Operations: Arithmetic and Logical
Recall: 
a data type includes representation and operations.
We now have a good representation for signed integers,
so let’s look at some arithmetic operations:

• Addition
• Subtraction
• Sign Extension

2-13

• Sign Extension

(We’ll also look at overflow conditions for addition.)
Multiplication, division, etc., can be built from these 
basic operations.
Review: Logical operations are also useful:

• AND
• OR
• NOT
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Addition

As we’ve discussed, 2’s comp. addition is just 
binary addition.

• assume all integers have the same number of bits

• ignore carry out

• for now, assume that sum fits in n-bit 2’s comp. representation

2-14

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + 11110111 (-9)

01011000 (98) 11101101 (-19)

Assuming 8-bit 2’s complement numbers.
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Subtraction
Negate subtrahend (2nd no.) and add.

• assume all integers have the same number of bits

• ignore carry out

• for now, assume that difference fits in n-bit 2’s comp. 
representation

2-15

01101000 (104) 11110110 (-10)

- 00010000 (16) - 11110111 (-9)

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + 00001001 (9)

01011000 (88) 11111111 (-1)

Assuming 8-bit 2’s complement numbers.
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Sign Extension
To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:
4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

2-16

Instead, replicate the MS bit -- the sign bit:

1100 ( 4) 00001100 (12, not 4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)
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Overflow
If operands are too big, then sum cannot be represented 
as an n-bit 2’s comp number.

01000 (8) 11000 (-8)

+ 01001 (9) + 10111 (-9)

10001 (-15) 01111 (+15)

2-17

We have overflow if:
• signs of both operands are the same, and

• sign of sum is different.

Another test -- easy for hardware:
• carry into MS bit does not equal carry out

( ) ( )
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Fractions: Fixed-Point
How can we represent fractions?

• Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

• 2’s comp addition and subtraction still work.

 if binary points are aligned

2-1 = 0.5

2-18

00101000.101 (40.625)

+ 11111110.110 (-1.25)

00100111.011 (39.375)

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic.
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Very Large and Very Small: Floating-Point
Large values: 6.023 x 1023 -- requires 79 bits

Small values: 6.626 x 10-34 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Need to represent F (fraction), E (exponent), and sign.
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IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.01

254exponent1,2fraction.11
126

127exponent








S

S

N

N
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Floating Point Example
Single-precision IEEE floating point number:

10111111010000000000000000000000

• Sign is 1 – number is negative.

• Exponent field is 01111110 = 126 (decimal)

sign exponent fraction
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• Exponent field is 01111110 = 126 (decimal).

• Fraction is 0.100000000000… = 0.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.
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LC-3 Data Types
Some data types are supported directly by the
instruction set architecture.

For LC-3, there is only one supported data type:
• 16-bit 2’s complement signed integer

• Operations: ADD AND NOT
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Operations: ADD, AND, NOT

Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, etc.,
in the software that we write.
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Summary
Review: unsigned numbers

New: signed numbers

Sign/magnitude and one’s complement

Two’s complement

Two’s Complement operations & issues

Addition, subtraction

Sign extension

Overflow

Fractions

Fixed point

Floating point: IEEE754 standard
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