
1

Introduction to Computer
EngineeringEngineering

ECE/CS 252, Fall 2010

Prof. Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin – Madison

Chapter 2
Bits, Data Types,
and Operations
- Part 2

Slides based on set prepared by
Gregory T. Byrd, North Carolina State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review: Unsigned Integers

Weighted positional notation
• like decimal numbers: “329”

• “3” is worth 300, because of its position, while “9” is only worth 9

2-3

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review: Unsigned Integers (cont.)
An n-bit unsigned integer represents 2n values:
from 0 to 2n-1.

22 21 20

0 0 0 0

0 0 1 1

0 1 0 2

2-4

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review: Unsigned Binary Arithmetic
Base-2 addition – just like base-10!

• add from right to left, propagating carry

10010 10010 1111
+ 1001 + 1011 + 1

carry

2-5

11011 11101 10000

10111
+ 111

11110

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

New: Signed Integers
With n bits, we have 2n distinct values.

• assign about half to positive integers (1 through 2n-1)
and about half to negative (- 2n-1 through -1)

• that leaves two values: one for 0, and one extra

Positive integers
• just like unsigned – zero in most significant bit

2-6

00101 = 5

Negative integers
• sign-magnitude – set top bit to show negative,

other bits are the same as unsigned
10101 = -5

• one’s complement – flip every bit to represent negative
11010 = -5

• in either case, MS bit indicates sign: 0=positive, 1=negative

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Two’s Complement
Problems with sign-magnitude and 1’s complement

• two representations of zero (+0 and –0)
• arithmetic circuits are complex

Adding a negative number => subtraction
Need to “correct” result to account for borrowing

Two’s complement representation developed to make

2-7

Two s complement representation developed to make
circuits easy for arithmetic.

• for each positive number (X), assign value to its negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring carry out

00101 (5) 01001 (9)

+ 11011 (-5) + 10111 (-9)

00000 (0) 00000 (0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Two’s Complement Representation
If number is positive or zero,

• normal binary representation, zeroes in upper bit(s)

If number is negative,
• start with positive number

• flip every bit (i.e., take the one’s complement)

• then add one

2-8

00101 (5) 01001 (9)

11010 (1’s comp) 10110 (1’s comp)

+ 1 + 1
11011 (-5) 10111 (-9)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Two’s Complement Shortcut
To take the two’s complement of a number:

• copy bits from right to left until (and including) the first “1”

• flip remaining bits to the left

011010000 011010000

2-9

100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Two’s Complement Signed Integers
MS bit is sign bit – it has weight –2n-1.

Range of an n-bit number: -2n-1 through 2n-1 – 1.
• The most negative number (-2n-1) has no positive counterpart.

-23 22 21 20

0 0 0 0 0

-23 22 21 20

1 0 0 0 -8

2-10

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Converting 2’s Complement to Decimal
1. If leading bit is one, take two’s

complement to get a positive number.

2. Add powers of 2 that have “1” in the
corresponding bit positions.

3. If original number was negative,
add a minus sign.

n 2n

0 1

1 2

2 4

3 8

2-11

add a minus sign.
4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Assuming 8-bit 2’s complement numbers.

X = 11100110two

-X = 00011010
= 24+23+21 = 16+8+2
= 26ten

X = -26ten

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Converting Decimal to Binary (2’s C)
1. Change to positive decimal number.

2. Use either repeated division by 2 or repeated
subtraction of powers of two

3. Append a zero as MS bit;
if original was negative, take two’s complement.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

2-12

X = -104ten 104 - 64 = 40 bit 6
40 - 32 = 8 bit 5

8 - 8 = 0 bit 3

01101000two

X = 10011000two

7 128

8 256

9 512

10 1024

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operations: Arithmetic and Logical
Recall:
a data type includes representation and operations.
We now have a good representation for signed integers,
so let’s look at some arithmetic operations:

• Addition
• Subtraction
• Sign Extension

2-13

• Sign Extension

(We’ll also look at overflow conditions for addition.)
Multiplication, division, etc., can be built from these
basic operations.
Review: Logical operations are also useful:

• AND
• OR
• NOT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Addition

As we’ve discussed, 2’s comp. addition is just
binary addition.

• assume all integers have the same number of bits

• ignore carry out

• for now, assume that sum fits in n-bit 2’s comp. representation

2-14

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + 11110111 (-9)

01011000 (98) 11101101 (-19)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Subtraction
Negate subtrahend (2nd no.) and add.

• assume all integers have the same number of bits

• ignore carry out

• for now, assume that difference fits in n-bit 2’s comp.
representation

2-15

01101000 (104) 11110110 (-10)

- 00010000 (16) - 11110111 (-9)

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + 00001001 (9)

01011000 (88) 11111111 (-1)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sign Extension
To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:
4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

2-16

Instead, replicate the MS bit -- the sign bit:

1100 (4) 00001100 (12, not 4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Overflow
If operands are too big, then sum cannot be represented
as an n-bit 2’s comp number.

01000 (8) 11000 (-8)

+ 01001 (9) + 10111 (-9)

10001 (-15) 01111 (+15)

2-17

We have overflow if:
• signs of both operands are the same, and

• sign of sum is different.

Another test -- easy for hardware:
• carry into MS bit does not equal carry out

() ()

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fractions: Fixed-Point
How can we represent fractions?

• Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

• 2’s comp addition and subtraction still work.

 if binary points are aligned

2-1 = 0.5

2-18

00101000.101 (40.625)

+ 11111110.110 (-1.25)

00100111.011 (39.375)

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic.

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Very Large and Very Small: Floating-Point
Large values: 6.023 x 1023 -- requires 79 bits

Small values: 6.626 x 10-34 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Need to represent F (fraction), E (exponent), and sign.

2-19

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.01

254exponent1,2fraction.11
126

127exponent








S

S

N

N

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Floating Point Example
Single-precision IEEE floating point number:

10111111010000000000000000000000

• Sign is 1 – number is negative.

• Exponent field is 01111110 = 126 (decimal)

sign exponent fraction

2-20

• Exponent field is 01111110 = 126 (decimal).

• Fraction is 0.100000000000… = 0.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Data Types
Some data types are supported directly by the
instruction set architecture.

For LC-3, there is only one supported data type:
• 16-bit 2’s complement signed integer

• Operations: ADD AND NOT

2-21

Operations: ADD, AND, NOT

Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, etc.,
in the software that we write.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary
Review: unsigned numbers

New: signed numbers

Sign/magnitude and one’s complement

Two’s complement

Two’s Complement operations & issues

Addition, subtraction

Sign extension

Overflow

Fractions

Fixed point

Floating point: IEEE754 standard

2-22

