

Review: Unsigned Integers (cont.)
An n-bit unsigned integer represents 2^{n} values: from 0 to 2^{n-1}.

2^{2}	2^{1}	2^{0}	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

New: Signed Integers
With n bits, we have $\mathbf{2}^{\mathrm{n}}$ distinct values.

- assign about half to positive integers (1 through $2^{\mathrm{n}-1}$)
and about half to negative (- 2^{n-1} through -1)
- that leaves two values: one for 0 , and one extra

Positive integers

- just like unsigned - zero in most significant bit $00101=5$
Negative integers
- sign-magnitude - set top bit to show negative,
other bits are the same as unsigned
$10101=-5$
- one's complement - flip every bit to represent negative $11010=-5$
- in either case, MS bit indicates sign: 0=positive, 1=negative

Two's Complement
Problems with sign-magnitude and 1's complement
- two representations of zero (+0 and -0)
- arithmetic circuits are complex
> Adding a negative number => subtraction
$>$ Need to "correct" result to account for borrowing

Two's complement representation developed to make circuits easy for arithmetic.

- for each positive number (X), assign value to its negative (-X), such that $\mathrm{X}+(-\mathrm{X})=0$ with "normal" addition, ignoring carry ou

00101 (5)
$+\quad 11011(-5)$
$00000(0)$
---:
00001

Two's Complement Representation

If number is positive or zero,

- normal binary representation, zeroes in upper bit(s)

If number is negative,

- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

Two's Complement Shortcut
To take the two's complement of a number:

- copy bits from right to left until (and including) the first " 1 "
- flip remaining bits to the left

$$
\begin{array}{rr}
& 011010000 \\
+ & 100101111 \\
+ & 1 \\
\hline
\end{array}
$$

Two's Complement Signed Integers
MS bit is sign bit - it has weight $\mathbf{- 2}^{n-1}$.
Range of an n-bit number: - $\mathbf{2}^{\mathrm{n}-1}$ through $\mathbf{2}^{\mathrm{n}-1}-\mathbf{1}$.

- The most negative number ($-2^{\mathrm{n}-1}$) has no positive counterpart.

-2^{3}	2^{2}	$2{ }^{1}$	2^{0}		-2^{3}	2^{2}	2^{1}	2^{0}	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Decimal to Binary (2's C)

1. Change to positive decimal number.
2. Use either repeated division by 2 or repeated subtraction of powers of two
3. Append a zero as MS bit;
if original was negative, take two's complement.

$X=-104_{\text {ten }}$	$\begin{aligned} 104-64 & =40 \\ 40-32 & =8 \\ 8-8 & =0 \end{aligned}$	bit 6 bit 5 bit 3
$X={101101000_{t w o}}^{10011000_{t w o}}$		

Addition

As we've discussed, 2's comp. addition is just binary addition.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation

$01101000(104)$
$+\quad 1110000\left(\begin{array}{l}(-16) \\ \hline 01011000(98)\end{array}+\quad 11110110(-10)\right.$
$11101101(-9)$

Assuming 8-bit 2's complement numbers.

Sign Extension

To add two numbers, we must represent them with the same number of bits.
If we just pad with zeroes on the left:

4-bit		8-bit	
0100	(4)	00000100	(still 4)
1100	(-4)	00001100	(12, not -4)

Instead, replicate the MS bit -- the sign bit:

4-bit		8-bit	
0100	(4)	00000100	(still 4)
1100	(-4)	11111100	(still -4)

Fractions: Fixed-Point
How can we represent fractions?

- Use a "binary point" to separate positive
from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work. $>$ if binary points are aligned

00101000.101 (40.625)
$+\quad 11111110.110(-1.25)$
00100111.011 (39.375)

No new operations -- same as integer arithmetic.

Very Large and Very Small: Floating-Point		
Large values: $6.023 \times 10^{23}-$ requires 79 bits		
Small values: $6.626 \times 10^{-34}-$ requires >110 bits		
Use equivalent of "scientific notation": F x 2^{E} Need to represent F (fraction), E (exponent), and sign. IEEE 754 Floating-Point Standard (32-bits):		
$\stackrel{1 b}{\longrightarrow} \stackrel{8 b}{\longrightarrow}$		
S Exponent Fraction		
$\begin{aligned} & N=-1^{S} \times 1 . \text { fraction } \times 2^{\text {exponent }-127}, 1 \leq \text { exponent } \leq 254 \\ & N=-1^{S} \times 0 . \text { fraction } \times 2^{-126}, \text { exponent }=0 \end{aligned}$		
		2-19

[^0]| | |
| :---: | :---: |
| LC-3 Data Types | |
| Some data types are supported directly by the instruction set architecture. | |
| For LC-3, there is only one supported data type:
 - 16-bit 2's complement signed integer
 - Operations: ADD, AND, NOT | |
| Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, etc., in the software that we write. | |
| | 2-21 |

Summary	
Review: unsigned numbers	
New: signed numbers	
Sign/magnitude and one's complement Two's complement	
Two's Complement operations \& issues	
Addition, subtraction	
Sign extension	
Overflow	
Fractions	
Fixed point	
Floating point: IEEE754 standard	
	2-22

[^0]:
 Floating Point Example
 Single-precision IEEE floating point number:

 - Sign is 1 - number is negative.
 - Exponent field is $01111110=126$ (decimal).
 - Fraction is $0.100000000000 \ldots=0.5$ (decimal).

 Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$.

