
1

LC-3 Details and Examples

ECE/CS 252, Fall 2010

Prof. Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin – Madison

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review: Instruction Set Architecture

ISA = All of the programmer-visible components
and operations of the computer

• memory organization

 address space -- how may locations can be addressed?

 addressibility -- how many bits per location?

• register set

5-2

 how many? what size? how are they used?

• instruction set

 opcodes

 data types

 addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Operate Instructions
With only ADD, AND, NOT…

How do we subtract? How do we OR?

Subtract: R3 = R1 - R2
Take 2’sC of R2, then add
(1) R2 = NOT(R2)
(2) R2 = R2 + 1
(3) R3 = R1 + R2

OR: R3 = R1 OR R2
Use DeMorgan’s Law
(1) R1 = NOT(R1)
(2) R2 = NOT(R2)
(3) R3 = R1 AND R2

5-3

How do we copy from one register to another?

How do we initialize a register to zero?

(3) R3 = R1 + R2 (3) R3 = R1 AND R2
(4) R3 = NOT(R3)

Register-to-register copy: R3 = R2
R3 = R2 + 0 (Add-immediate)

Initialize to zero: R1 = 0
R1 = R1 AND 0 (And-immediate)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review: Data Movement Instructions
Load -- read data from memory to register

• LD: PC-relative mode
• LDR: base+offset mode
• LDI: indirect mode NEW

Store -- write data from register to memory
ST PC l ti d

5-4

• ST: PC-relative mode
• STR: base+offset mode
• STI: indirect mode NEW

Load effective address -- compute address,
save in register

• LEA: PC-relative mode
• does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Indirect Addressing Mode
With PC-relative mode, can only address data
within 256 words of the instruction.

• What about the rest of memory?

Solution #1:
• Read address from memory location

5-5

Read address from memory location,
then load/store to that address.

First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LDI (Indirect)

5-6

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

STI (Indirect)

5-7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1  PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2  R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5]  R2
M[x30F4]  x3102

5-8

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2  0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2  R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14]  R2
M[x3102]  5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3  M[M[x30F4]]

R3  M[x3102]

R3  5

opcode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Instructions
Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
• branch is taken if a specified condition is true

signed offset is added to PC to yield new PC
l th b h i t t k

5-9

• else, the branch is not taken
PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
• always changes the PC

TRAP
• changes PC to the address of an OS “service routine”
• routine will return control to the next instruction (after TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JMP (Register)
Jump is an unconditional branch -- always taken.

• Target address is the contents of a register.

• Allows any target address.

5-10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TRAP

Calls a service routine, identified by 8-bit “trap vector.”

vector routine

x23 input a character from the keyboard

5-11

When routine is done,
PC is set to the instruction following TRAP.
(We’ll talk about how this works later.)

p y

x21 output a character to the monitor

x25 halt the program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Example
Count the occurrences of a character in a file

• Program begins at location x3000
• Read character from keyboard
• Load each character from a “file”

 File is a sequence of memory locations
Starting address of file is stored in the memory location

immediately after the program

5-12

• If file character equals input character, increment counter
• End of file is indicated by a special ASCII value: EOT (x04)
• At the end, print the number of characters and halt

(assume there will be less than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel.

• Useful when you don’t know ahead of time how many times
to execute a loop.

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Done?
(R1 ?= EOT)

Match?

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

NO

NO

YES

YES

5-13

Input char
from keybd

(TRAP x23)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

()

HALT
(TRAP x25)

NOYES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program (1 of 2)
Address Instruction Comments

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2  0 (counter)

x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3  M[x3102] (ptr)

x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 Input to R0 (TRAP x23)

x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1  M[R3]

5-14

x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4  R1 – 4 (EOT)

x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 If Z, goto x300E

x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1  NOT R1

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1  R1 + 1

X3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1  R1 + R0

x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 If N or P, goto x300B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Program (2 of 2)
Address Instruction Comments

x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2  R2 + 1

x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3  R3 + 1

x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1  M[R3]

x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Goto x3004

5-15

x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 R0  M[x3013]

x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0  R0 + R2

x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Print R0 (TRAP x21)

x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT (TRAP x25)

X3012 Starting Address of File

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII x30 (‘0’)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary
Common sequences for ALU ops

Indirect addressing mode: LDI/STI

Control: Jump/Trap

Detailed example

5-16

