
1

Introduction to Computer
EngineeringEngineering
ECE/CS 252, Fall 2010

Prof. Mikko Lipasti

Department of Electrical and Computer Engineering

University of Wisconsin – Madison

Chapter 6
Part II: Debugging

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging
You’ve written your program and it doesn’t work.

Now what?

What do you do when you’re lost in a city?
Drive around randomly and hope you find it?

Return to a known point and look at a map?

6-3

Return to a known point and look at a map?

In debugging, the equivalent to looking at a map
is tracing your program.

• Examine the sequence of instructions being executed.

• Keep track of results being produced.

• Compare result from each instruction to the expected result.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging Operations
Any debugging environment should provide means to:

1. Display values in memory and registers.

2. Deposit values in memory and registers.

3. Execute instruction sequence in a program.

4. Stop execution when desired.

6-4

Different programming levels offer different tools.
• High-level languages (C, Java, ...)

usually have source-code debugging tools.

• For debugging at the machine instruction level:

 Simulator

– any universal computing device can emulate another UCD

 operating system “monitor” tools

 in-circuit emulators (ICE)
– plug-in hardware replacements that give

instruction-level control

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

PennSim
Simulator

Command
window

Start/stop
execution

6-5

set/display
registers,
memory,

and frame
buffer

set
breakpoints

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Types of Errors
Syntax Errors

• You made a typing error that resulted in an illegal operation.

• Not usually an issue with machine language,
because almost any bit pattern corresponds to
some legal instruction.

• In high-level languages, these are often caught during the
translation from language to machine code

6-6

translation from language to machine code.

Logic Errors
• Your program is legal, but wrong, so

the results don’t match the problem statement.

• Trace the program to see what’s really happening and
determine how to get the proper behavior.

Data Errors
• Input data is different than what you expected.

• Test the program with a wide variety of inputs.

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tracing the Program
Execute the program one piece at a time,
examining register and memory to see results at each step.

Single-Stepping
• Execute one instruction at a time.

• Tedious, but useful to help you verify each step of your program.

Breakpoints
• Tell the simulator to stop executing when it reaches

6-7

Tell the simulator to stop executing when it reaches
a specific instruction.

• Check overall results at specific points in the program.

 Lets you quickly execute sequences to get a
high-level overview of the execution behavior.

Quickly execute sequences that your believe are correct.

Watchpoints (not available in PennSim)
• Tell the simulator to stop when a register or memory location changes

or when it equals a specific value.

• Useful when you don’t know where or when a value is changed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 1: Multiply
This program is supposed to multiply the two unsigned
integers in R4 and R5.

x3200 0101010010100000
x3201 0001010010000100
x3202 0001101101111111

clear R2

add R4 to R2

6-8

x3202 0001101101111111
x3203 0000011111111101
x3204 1111000000100101

decrement R5

R5 = 0?

HALT

No

Yes

Set R4 = 10, R5 =3.
Run program.

Result: R2 = 40, not 30.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Multiply Program

PC R2 R4 R5

x3200 -- 10 3

x3201 0 10 3

x3202 10 10 3

x3203 10 10 2

x3201 10 10 2

3202 20 10 2

PC and registers
at the beginning

of each instruction PC R2 R4 R5

x3203 10 10 2

x3203 20 10 1

3203 30 10 0

Single-stepping

Breakpoint at branch (x3203)

x3200 0101010010100000
x3201 0001010010000100
x3202 0001101101111111

6-9

x3202 20 10 2

x3203 20 10 1

x3201 20 10 1

x3202 30 10 1

x3203 30 10 0

x3201 30 10 0

x3202 40 10 0

x3203 40 10 -1

x3204 40 10 -1

40 10 -1

x3203 30 10 0

x3203 40 10 -1

40 10 -1

Executing loop one time too many.
Branch at x3203 should be based
on P bit only, not Z and P.

Should stop looping here!

x3202 0001101101111111
x3203 0000011111111101
x3204 1111000000100101

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 2: Summing an Array of Numbers
This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,
leaving the result in R1.

R1 = 0
R4 = 10

R2 = x3100

x3000 0101001001100000
x3001 0101100100100000
x3002 0001100100101010

6-10

R4 = 0?

HALT

No

Yes

R1 = R1 + M[R2]
R2 = R2 + 1

R4 = R4 - 1

x3002 0001100100101010
x3003 0010010011111100
x3004 0110011010000000
x3005 0001010010100001
x3006 0001001001000011
x3007 0001100100111111
x3008 0000001111111011
x3009 1111000000100101

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Summing Program
Running the the data below yields R1 = x0024,
but the sum should be x8135. What happened?

Address Contents

x3100 x3107

x3101 x2819

3102 0110

PC R1 R2 R4

x3000 -- -- --

3001 0

Start single-stepping program...

6-11

x3102 x0110

x3103 x0310

x3104 x0110

x3105 x1110

x3106 x11B1

x3107 x0019

x3108 x0007

x3109 x0004

x3001 0 -- --

x3002 0 -- 0

x3003 0 -- 10

x3004 0 x3107 10

Should be x3100!

Loading contents of M[x3100], not address.
Change opcode of x3003
from 0010 (LD) to 1110 (LEA).

…
x3002 0001100100101010
x3003 0010010011111100
x3004 0110011010000000
…

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 3: Looking for a 5
This program is supposed to set
R0=1 if there’s a 5 in one of ten
memory locations, starting at x3100.

Else, it should set R0 to 0.

R0 = 1, R1 = -5, R3 = 10
R4 = x3100, R2 = M[R4]

x3000 0101000000100000
x3001 0001000000100001
x3002 0101001001100000
x3003 0001001001111011
x3004 0101011011100000
x3005 0001011011101010
x3006 0010100000001001

3007 0110010100000000

6-12

R2 = 5?

HALT

No

Yes

, []

R4 = R4 + 1
R3 = R3-1

R2 = M[R4]

x3007 0110010100000000
x3008 0001010010000001
x3009 0000010000000101
x300A 0001100100100001
x300B 0001011011111111
x300C 0110010100000000
x300D 0000001111111010
x300E 0101000000100000
x300F 1111000000100101
x3010 0011000100000000

R3 = 0?

R0 = 0

Yes

No

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Fives Program
Running the program with a 5 in location x3108
results in R0 = 0, not R0 = 1. What happened?

Address Contents

x3100 9

x3101 7

3102 32

Perhaps we didn’t look at all the data?
Put a breakpoint at x300D to see
how many times we branch back.

PC R0 R2 R3 R4

…
x3007 0110010100000000
x3008 0001010010000001
x3009 0000010000000101
x300A 0001100100100001

6-13

x3102 32

x3103 0

x3104 -8

x3105 19

x3106 6

x3107 13

x3108 5

x3109 61

x300D 1 7 9 x3101

x300D 1 32 8 x3102

x300D 1 0 7 x3103

0 0 7 x3103 Didn’t branch
back, even
though R3 > 0?

Branch uses condition code set by
loading R2 with M[R4], not by decrementing R3.
Swap x300B and x300C, or remove x300C and
branch back to x3007.

x300B 0001011011111111
x300C 0110010100000000
x300D 0000001111111010
x300E 0101000000100000
x300F 1111000000100101
x3010 0011000100000000

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 4: Finding First 1 in a Word
This program is supposed to return (in R1) the bit position
of the first 1 in a word. The address of the word is in
location x3009 (just past the end of the program). If there
are no ones, R1 should be set to –1.

R1 = 15
R2 = data x3000 0101001001100000

x3001 0001001001101111

6-14

R2[15] = 1?

decrement R1
shift R2 left one bit

HALT

x3001 0001001001101111
x3002 1010010000000110
x3003 0000100000000100
x3004 0001001001111111
x3005 0001010010000010
x3006 0000100000000001
x3007 0000111111111100
x3008 1111000000100101
x3009 0011000100000000

R2[15] = 1?

Yes

Yes

No

No

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the First-One Program
Program works most of the time, but if data is zero,
it never seems to HALT.

PC R1

x3007 14

x3007 13

Breakpoint at backwards branch (x3007)

PC R1

x3007 4

3007 3 If th b h t HALT

6-15

x3007 13

x3007 12

x3007 11

x3007 10

x3007 9

x3007 8

x3007 7

x3007 6

x3007 5

x3007 3

x3007 2

x3007 1

x3007 0

x3007 -1

x3007 -2

x3007 -3

x3007 -4

x3007 -5

If no ones, then branch to HALT
never occurs!
This is called an “infinite loop.”
Must change algorithm to either
(a) check for special case (R2=0), or
(b) exit loop if R1 < 0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging: Lessons Learned
Trace program to see what’s going on.

• Breakpoints, single-stepping

When tracing, make sure to notice what’s
really happening, not what you think should happen.

• In summing program it would be easy to not notice

6-16

In summing program, it would be easy to not notice
that address x3107 was loaded instead of x3100.

Test your program using a variety of input data.
• In Examples 3 and 4, the program works for many data sets.

• Be sure to test extreme cases (all ones, no ones, ...).

