
ECE 252 - Homework 8

Written (problems 1 & 2) Due in Discussion Wed Dec. 7
th

Code (problem 3) Due Thurs. Dec 8
th
 at Midnight (11:59 PM)

Instructions: You should do this homework in your group assigned to you in your 252

section. You should hand in ONE copy of the homework that lists the common section

number and names and UW ID numbers of all students. You should staple multiple

pages together.

Warning: Most homeworks will use questions from your textbook, Patt and Patel's

Introduction to Computing Systems, which we abbreviate (ItCS).

First contact for questions is TA Dustin Kreft (dkreft@wisc.edu)

Problem 1 (4 points): What does the following program do?

Give a BRIEF description of what the program checks for, as well as, what I/O is

occurring with in the system and what is that I/O?

.ORIG x3000

 LD R0, ASCII

 LD R1, NEG

AGAIN LDI R2, DSR

 BRzp AGAIN

 STI R0, DDR

 ADD R0, R0, #-1

 ADD R3, R0, R1

 BRp AGAIN

 HALT

ASCII .FILL x0039

NEG .FILL xFFD1

DSR .FILL xFE04 ; Address of DSR

DDR .FILL xFE06 ; Address of DDR

 .END

Solution: The program checks for the status of the display register to unsure the display

is ready. The I/O that is occurring in the system is an output to the display/console which

is the numbers 9876543210.

Problem 2 (4 points): Explain why the following program will not work and what the

output should be. Correct the program so it works correctly.

.ORIG x3000

 JSR A

 OUT

 BRnzp DONE

A AND R0, R0, 0

 ADD R0, R0, 5

 JSR B

 RET

DONE HALT

ASCII .FILL x0030

B LD R1, ASCII

 ADD R0, R0, R1

 RET

 .END

Solution: The program will not work because of the second jump, JSR B, this will over

write the R7 register and cause an infinite loop. There are several ways to correct the

problem. 1) Store R7 before making another jump then recall it. 2) Add the code inline

for the B routine. Or any other form that works. The output should be ‘5’.

Problem 3 (17 points):

You will complete the code for your project to do the tasks listed below.

1. Complete GET_CHAR routine (3 points):

This routine doesn’t take any input but returns the ASCII value of the character

received in register R0. Essentially, this task can be broken down into following

parts:

a. Check whether any input was received or not (i.e. using KBSR register).

b. If yes, then read the value from KBDR register and write into R0.

c. If no character was received, then write 0 into R0.

KBSR and KBDR memory locations that contain the memory-mapped register

addresses. Please read section 8.2 (p202) from ItCS.

2. At the start of SCROLL_LOOP, poll I/O using the above mentioned routine and

do the following operations if input is received:

a. Accept command (3 points): w and z are the valid inputs (both in lower and

upper case). If no input is received, then branch to NO_KEY_PRESSED

label. If ‘w’ or ‘W’ is received as input, then branch to W_PRESSED label.

Else if ‘z’ or ‘Z’ is received, then branch to Z_PRESSED label. Else if any

other character was received, then display the error message

INPUT_ERROR_MSG, which is “\nWrong Input\n” and branch to

NO_KEY_PRESSED. Also echo the character to the console.

Perform the following actions for the given command:

b. W or w (3 points): This should change the color in which the string is

being displayed. Array COLOR_LIST has the values of colors to use.

Every time this command is entered, the color of the string should be

changed to the next color in the list. If the next color is zero, then the color

should be reset to the first value (BLUE). Also, display the message

COLOR_MSG, which is “\nColor changed\n”, every time the color

changes. This piece of code should be entered under label W_PRESSED.

Unconditionally branch to NO_KEY_PRESSED label when done.

There are 2 memory locations tracking the current color value and

address: CURR_COLOR and CURR_COLOR_INDEX. CURR_COLOR

is used in DRAW_STRING to determine the current color in which the

string is drawn. CURR_COLOR_INDEX holds the offset of current color

from the label COLOR_LIST and makes it easier to change to next color.

Current contents of COLOR_LIST are given below. You are free to

change the values of the colors as you please. For changing to your

favorite color, refer to PennSim Manual.

COLOR_LIST:
 .FILL 0x001F; BLUE

 .FILL 0x7FFF; WHITE
 .FILL 0x7C00; RED

 .FILL 0x03E0; GREEN
 .FILL 0x3466; Puce
 .FILL 25000 ; Random
 .FILL 0x0000

c. Z or z (8 points): This command lets you change the string being

displayed. Firstly, you should prompt for a string by displaying the

message PROMPT_FOR_STRING, which is “\nEnter a string\n”. The

program should start with this. The input string from the user can contain

the characters A-Z (ASCII 65-91), a-z (ASCII 97-112), enter (ASCII 13)

and space (ASCII 32). You should receive input characters from console

and store it at memory location labeled as STRING.

As the characters are being entered, check if they are valid or not. If yes,

then keep storing the characters until the enter key is received. You should

not store enter, instead terminate the string with a null character. If a valid

character is not received, then display the error message

STRING_ERR_MSG, which is “\nInvalid character in string\n”, and again

prompt for a string.

Check for the number of characters being entered by the user, and if it

exceeds a MAX_STRING_LEN value then stop accepting input and

prompt the user saying MAX_LEN_WARN_MSG which is “\nString

length limit reached\n” and continue to display the string entered.

(MAX_LEN_WARN_MSG + 1) memory locations have been reserved

for string starting at memory location labeled as STRING.

Once a valid string is received, echo the string being displayed to the

console and jump to NO_KEY_PRESSED label to display the string.

Since we can display only A-Z and space, characters a-z should be

changed to upper case before being displayed. Don’t forget to change the

case before storing it to memory or else the character won’t be displayed

(why?).

Before start of scroll loop, you should jump to Z_PRESSED label in order

to prompt user for the string to be displayed. And then at the beginning of

the Scroll loop, you should check if any input was received or not and then

take proper action.

Use “TRAP x21” (or OUT) to display a character on console. It takes in ASCII value

of the char to be drawn as input in R0. To display a string on a console, use TRAP

x22 (or PUTS). It takes an address from where the null-terminated string starts as

input in R0. Both of these traps do not give any output. For more information on

character output read section 8.3 (p204) of ItCS.

The complete Scroll Loop has been provided. It uses the DRAW_STRING subroutine

to draw the string stored starting at memory location labeled as STRING. It doesn’t

take any inputs in registers but from memory locations LOCAL_X, LOCAL_Y,

CURR_COLOR and STRING. The wrap logic in Scroll Loop has also been provided

to you.

Note that the GET_CHAR routine is non-blocking, i.e. it’ll poll only once. Hence

while receiving the string characters as input, you need to keep polling (or in other

words, repeatedly call GET_CHAR) till you receive a character and then only

proceed to the error check and storing in memory. If you are not careful, you’ll end

up getting invalid characters since the input would be 0x0.

Summarizing, CURR_COLOR tracks the current color of string and can be changed

by command ‘w’ or ‘W’. STRING holds the actual string being displayed. The

characters in the string can be changed on pressing ‘z’ or ‘Z’. Maximum length of

string being entered is available in MAX_STRING_LEN. Also, the string needs to be

entered at the start of the program.

Also, note that lc3os has been further modified for Homework 8 to incorporate color.

Hence, it is different from the previous homeworks. Make sure to load the homework

8 version (lc3os_hw8.asm) or else your code for color change might not work. You

should also load the bitmap file (hw8_bitmap.asm) before testing your program. The

bitmap file is same as homework 7 though.

Sample console output has been provided below for your assistance. The Strings in

yellow are info messages, in sky blue are input received echoed back to console, in

red are the error messages and in green are the strings being currently displayed.

Enter a string

testing the limi

String length limit reached

TESTING THE LIMw

Color changed

w

Color changed

y

Wrong Input

x

Wrong Input

a

Wrong Input

z

Enter a string

A Valid String

A VALID STRINGx

Wrong Input

w

Color changed

z

Enter a string

invalid 1

Invalid character in string

Enter a string

invalid again 2

Invalid character in string

Enter a string

invalid =

Invalid character in string

Enter a string

valid this time

VALID THIS TIME

Extra Credit (5 points):

For extra credit, you can implement some features on your own. Some of the other

features may include:

- Incrementing y by 1 and wrapping (i.e. start from top) once you’ve reached at

bottom

- Decrementing y by 1 and wrapping (i.e. start from bottom) once you’ve reached

on top

- Change the speed of scrolling

- Reverse scrolling

- User can enter a “?” and console will display the list of valid commands

- Etc.

A write up should define and explain the feature(s) clearly and what character is being

used to invoke the feature.

