& iy

NSIN

Introduction to Computer
Engineering

ECE/CS 252, Fall 2008
Prof. Mikko Lipasti
Department of Electrical and Computer Engineering
University of Wisconsin — Madison

Copyrgh © e P o

Transistor: Building Block of Computers
Microprocessors contain millions of transistors
« Intel Core 2 Duo: 291 million
» AMD Barcelona: 463 million
» IBM Power6: 790 million

Logically, each transistor acts as a switch
Combined to implement logic functions
+ AND, OR, NOT
Combined to build higher-level structures
» Adder, multiplexer, decoder, register, ...
Combined to build processor
+ LC-3

3-3

Chapter 3
Digital Logic
Structures

Slides based on set prepared by
Gregory T. Byrd, North Carolina State University

Copyight o nc.

Simple Switch Circuit

Switch open:
« No current through circuit
« Lightis off
o Vo is +2.9V
+

2.9y V Switch closed:

out « Short circuit across switch
- * Current flows

* Lightis on

* Vo is OV

Switch-based circuits can easily represent two states:

on/off, open/closed, voltage/no voltage. 3.4

Copyrghi @ ne. o ordisplay.

N-type MOS Transistor

MOS = Metal Oxide Semiconductor
» two types: N-type and P-type
N-type
« when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)
« when Gate has zero voltage,
open circuit between #1 and #2

(switch open)

Gate —| l{

#2

Terminal #2 must be GND

connected to GND (0V).

Planar N-type Metal-Oxide Semiconductor Field

Effect Transistor (MOSFET) source Drain (GND)
< Start with silicon substrate on
wafer
« “Dope” to create P and N
wells/regions

« Channel conducts only if electric
field is present

« Overlay SiO, insulator
« Deposit metal (or polysilicon)
gates, contacts
* Use photolithography
« Project geometric shape to etch
photoresist
« Apply dopants, metal vapor
* Repeat for each layer/component

Copyrgh & ne. » or display.

P-type MOS Transistor

P-type is complementary to N-type
» when Gate has positive voltage,

open circuit between #1 and #2 #1

(switch open) l
* when Gate has zero voltage,

short circuit between #1 and #2 (

(switch closed) w

Terminal #1 must be
connected to +2.9V. 3-7

Copyright © o

Logic Gates

Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.

Digital symbols:
« recall that we assign a range of analog voltages to each
digital (logic) symbol

Digital Values » ‘"
L : L

i
Analog Values » 0 0.5 2.4 2.9 Volts

egal “r

« assignment of voltage ranges depends on
electrical properties of transistors being used

»>typical values for "1": +5V, +3.3V, +2.9V, +1.1V
»for purposes of illustration, we'll use +2.9V

Copyrghi e P o

CMOS Circuit
Complementary MOS
Uses both N-type and P-type MOS transistors
* P-type
» Attached to + voltage
» Pulls output voltage UP when input is zero
¢ N-type
» Attached to GND
» Pulls output voltage DOWN when input is one

For all inputs, make sure that output is either connected to GND or to +,
but not both!

3-9

Copyrghi @ ne. o ordisplay.

NOR Gate
A=0-

B=1-

AT

A
0
0
1
1

Note: Serial structure on top, parallel on bottom. 3-11

P O K Oo|l
o o o r|0O

3-8
Inverter (NOT Gate)
7| :p-type
In=0 Qut=1
;"IN
In Out ‘L e
Truth table T
‘ j:'.P-I‘ype
In | Out In |Out In=1 Out=0
ov|29v o | 1
29v| ov 1| o0 i N-type
3-10
OR Gate

P O Fk O|®
k Fr r Ol0O

p
l
» L O o>

|Add inverter to NOR.

3-12

Copyrgh & ne. » or display.

NAND Gate (AND-NOT)
A=0
B=1—
ATTd
B— Cc
| A B| C
| 0 0 1
0 1 1
1 0 1
11 0
Note: Parallel structure on top, serial on bottom. 3-13

Copyright © o

AND Gate

A
0
0
1
1

» o r o|lwm
» O o o|l0

B—

9
—
l | Add inverter to NAND.

Copyrghi e

Planar Realization of 2-input NAND
» Gates made up of
: planar

j»' = components:
O Ly * Metal: VDD, Ground,

,|
- . ‘—,— . Output C

« Polysilicon: Inputs A

]

3-14
Basic Logic Gates
A —|>0— A
NOT
A A S—
B:D— A+B B:Dof A+B
OR NOR
A A -
| e g e
AND NAND
3-16

[
]
L " J, and B
] P diffusion: pullup
transistors
T TR T » N diffusion: pulldown
Do T mowrn transistors
o LTS
315
More than 2 Inputs?
AND/OR can take any number of inputs.
* AND = 1if all inputs are 1.
« OR=1ifanyinputis 1.
+ Similar for NAND/NOR.
Can implement with multiple two-input gates,
or with single CMOS circuit.
A
B
¥ ABC
A —
=0
R\\'-ﬁg A
c
317

Copyrght e nc. o or dsplay.

Practice
Implement a 3-input NOR gate with CMOS.

3-18

Copyright © The ne. » or display.

Logical Completeness
Can implement ANY truth table with AND, OR, NOT.

A B C|D A B C
0 0 0]O |
0 0 1]0 1. AND combinations
thatyield a "1" in the

01041 L truth table.
0 1 1]0
1 0 0fO0
1 0 11 2. OR the results
11 0o of the AND gates.
1 1 10

D

3-19

Copyright © o

Practice

Implement the following truth table.
A B C

Copyright © The e P o

DeMorgan's Law
Converting AND to OR (with some help from NOT)
Consider the following gate:

To convert AND to OR

|A-E|AB (or vice versa),
invert inputs and output.

» », O of>»
» O P Ol
o o r Py

3-21

Copyight o

Summary
MOS transistors are used as switches to implement
logic functions.
« N-type: connect to GND, turn on (with 1) to pull down to 0
« P-type: connect to +2.9V, turn on (with 0) to pull up to 1

Basic gates: NOT, NOR, NAND
« Logic functions are usually expressed with AND, OR, and NOT

Properties of logic gates
« Completeness
»can implement any truth table with AND, OR, NOT
« DeMorgan's Law
»convert AND to OR by inverting inputs and output

Copyrghi @ ne. o ordisplay.

Building Functions from Logic Gates

We've already seen how to implement truth tables
using AND, OR, and NOT -- an example of
combinational logic.

Combinational Logic Circuit
« output depends only on the current inputs
« stateless
Sequential Logic Circuit
« output depends on the sequence of inputs (past and present)
« stores information (state) from past inputs

We'll first look at some useful combinational circuits,
then show how to use sequential circuits to store
information.

3-23

3-22
Decoder
n inputs, 2" outputs
« exactly one output is 1 for each possible input pattern
A 1, if AB=00
B
_Di 1, if AB=01
2-bit
decoder _:jD— 1,ifAB=10
} 1, if AB=11
3-24

Copyrgh & ne. » or display.

Multiplexer (MUX)

n-bit selector and 2" inputs, one output
« output equals one of the inputs, depending on selector

Copyright © o

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

O

E

"
O

out

A B

%@ -

1 1
11 11 1

P P P P OO O Oo|>
P K O O Fr P OO|lD
O Fr O PR O Fr O
P OO r O PR L O
P B P O Fr OO

A B C D
S,
| | | s,
ABCD
s
A, if 5=00
B, if S=01
C,ifS=10
W e 4-to-1 MUX
3-25
Four-bit Adder
A, B A, B, A, B, A, B,
[[[
A B A B A B A B
Full < Full ¢ Full ¢ Full c-0
Adder Adder Adder Adder
C s [+ s [+ s c s
Cu S s, s s,
3-27

Copyight o nc.

Combinational vs. Sequential

Combinational Circuit
« always gives the same output for a given set of inputs
»ex: adder always generates sum and carry,
regardless of previous inputs
Sequential Circuit
« stores information
« output depends on stored information (state) plus input

»so agiven input might produce different outputs,
depending on the stored information

« example: ticket counter
»advances when you push the button
»output depends on previous state
« useful for building “memory” elements and “state machines”

3-28

Copyrghi @ ne. o ordisplay.

R-S Latch: Simple Storage Element
Ris used to “reset” or “clear” the element — set it to zero.
Sis used to “set” the element — set it to one.

If both R and S are one, out could be either zero or one.
* “quiescent” state -- holds its previous value
» note:ifais 1, b is 0, and vice versa
3-29

Copyrght e nc. o or dsplay.

Clearing the R-S latch
Suppose we start with output = 1, then change R to zero.

Then set R=1 to “store” value in quiescent state. 3-30

Copyrgh & ne. » or display.

Setting the R-S Latch
Suppose we start with output = 0, then change S to zero.

\Output changes to one.

Then set S=1 to “store” value in quiescent state. 3-31

Copyright © o

R-S Latch Summary
R=S=1

« hold current value in latch
S=0,R=1

« setvalueto 1l
R=0,S=1

« setvalueto 0

R=S=0
« both outputs equal one
« final state determined by electrical properties of gates
« Don'tdoit!

Copyrghi e P o

Gated D-Latch

Two inputs: D (data) and WE (write enable)
» when WE =1, latch is set to value of D
»>S=NOT(D),R=D
* when WE =0, latch holds previous value
»S=R=1

D— S
out
WE

out

3-33

Copyight o nc.

Register

A register stores a multi-bit value.
* We use a collection of D-latches, all controlled by a common

Copyrghi @ ne. o ordisplay.

Representing Multi-bit Values

Number bits from right (0) to left (n-1)

* just aconvention -- could be left to right, but must be consistent
Use brackets to denote range:
DI[l:r] denotes bit | to bit r, from left to right

15 0

A= 0101001101010101

/ |

A[14:9] = 101001 A[2:0]= 101

May also see A<14:9>,
especially in hardware block diagrams.

3-35

WE.
*« When WE=1, n-bit value D is written to register.
D! D! DI Dﬁ
|
[[[
WE — | L
Q, Q; Q, Q,

3-34

Memory

Now that we know how to store bits,
we can build a memory — alogical k x m array of
stored bits.

Address Space: K= on

number of locations | ions
(usually a power of 2) :

Addressability:

number of bits per location

m bits
(e.g., byte-addressable)

3-36

22 x 3 Memory

m |, word select i’m‘)

| |
= -
R
1 O
ST HTHC &

address
decoder

Copyright © o

More Memory Details

This is a not the way actual memory is implemented.
« fewer transistors, much more dense,
relies on electrical properties
But the logical structure is very similar.
« address decoder
« word select line
« word write enable
Two basic kinds of RAM (Random Access Memory)
Static RAM (SRAM)
« fast, not very dense (bitcell is a latch)
Dynamic RAM (DRAM)
« slower but denser, bit storage must be periodically refreshed

« each bitcell is a capacitor (like a leaky bucket) that decays
Also, non-volatile memories: ROM, PROM, flash, ...

SRAM Memory

Wit bitines !m

[Wiite word e

CES
]

[Read bitines

&

3-39
Combinational vs. Sequential
Two types of “combination” locks
Combinational Sequential
Success depends only on Success depends on
the values, not the order in the sequence of values
which they are set. (e.g, R-13, L-22, R-3).
3-41

3-38
State Machine
Another type of sequential circuit
« Combines combinational logic with storage
« “Remembers” state, and changes output (and state)
based on inputs and current state
State Machine
Inputs Combinational Outputs
Logic Circuit
Storage
Elements
3-40
State

The state of a system is a snapshot of
all the relevant elements of the system
at the moment the snapshot is taken.

Examples:

« The state of a basketball game can be represented by
the scoreboard.

»Number of points, time remaining, possession, etc.

« The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board.

3-42

Copyrgh & ne. » or display.

State of Sequential Lock

Our lock example has four different states,
labelled A-D:

A: Thelock is not open,
and no relevant operations have been performed.

B: The lock is not open,
and the user has completed the R-13 operation.
C: The lock is not open,
and the user has completed R-13, followed by L-22.

D: The lock is open.

Copyright © o

State Diagram

Shows states and
actions that cause a transition between states.

other than L-22

3-44

Copyrghi e P o

Finite State Machine
A description of a system with the following components:

A finite number of states

A finite number of external inputs

A finite number of external outputs

An explicit specification of all state transitions

An explicit specification of what causes each
external output value.

a s> wbdpE

Often described by a state diagram.
* Inputs may cause state transitions.
« Outputs are associated with each state (or with each transition).

Copyight o nc.

The Clock

Frequently, a clock circuit triggers transition from
one state to the next.

ugr
0 | I
One time—
Cycle

At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external inputs.

« Not always required. In lock example, the input itself triggers a transition.

3-45
Implementing a Finite State Machine
Combinational logic
« Determine outputs and next state.
Storage elements
* Maintain state representation.
State Machine
Inputs Combinational Outputs
Logic Circuit
Storage
Clock —— Elements
3-47

3-46
Storage: Master-Slave Flipflop
A pair of gated D-latches,
to isolate next state from current state.
T From
i Coge G

i Lalch A

Clock
During 1%t phase (clock=1), During 2" phase (clock=0),
previously-computed state next state, computed by
becomes current state and is | | logic circuit, is stored in
sent to the logic circuit. Latch A.

3-48

Copyrgh & ne. » or display.

Storage
Each master-slave flipflop stores one state bit.

The number of storage elements (flipflops) needed
is determined by the number of states
(and the representation of each state).

Examples:
* Sequential lock
» Four states — two bits
« Basketball scoreboard

> 7 bits for each score, 5 bits for minutes, 6 bits for seconds,
1 bit for possession arrow, 1 bit for half, ...

Copyright © o

Complete Example

A blinking traffic sign
* No lights on
«1&2o0n
«1,2,3,&4o0n
«1,2,3,4&50n
« (repeat as long as switch
is turned on)

DANGER

MOVE
RIGHT

Copyrghi e P o

Traffic Sign State Diagram

3-51

Transition on each clock cycle.

3-50
Traffic Sign Truth Tables
Outputs Next State: S;'Sy’
(depend only on state: S;S;) (depend on state and input)
Lights 1 and 2 F Switch
Lights 3 and 4 In 'S; S, |S; S,
ﬁ“g”‘s 0 x x[o o
Z Y X 1 0 o0 1
0O 0]J]0O O O 1 0 1|1 O
0 1]/1 0 o0 1 1 o1 1
1 01 1 o0 1 1 1[0 o0
1 1 1 1 1 Whenever In=0, next state is 00.
352

Copyrghi @ ne. o ordisplay.

Traffic Sign Logic

In

Clock

Master-slave
flipflop

3-53

‘Copyright © The McGraw Hil Comparies, nc. Permission required for reproducton or display.

From Logic to Data Path
The data path of a computer is all the logic used to
process information.

« See the data path of the LC-2 on next slide.

Combinational Logic
« Decoders -- convert instructions into control signals
« Multiplexers -- select inputs and outputs
« ALU (Arithmetic and Logic Unit) -- operations on data
Sequential Logic
« State machine -- coordinate control signals and data movement
« Registers and latches -- storage elements

3-54

nnnnnnnnnnnnnnnnnnn

5 bk

o Tf

3-55

10

