

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Mikko Lipasti & Prof. Gurinder S. Sohi

TAs: Daniel Chang, Felix Loh, Philip Garcia, Sean Franey, Vignyan Kothinti Naresh, Raghu Raman

and Newsha Ardalani

Midterm Examination 4

In Class (50 minutes)

Friday, December 17, 2010

Weight: 12.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 9 pages, including one page for the LC3 Instruction Set and two blank pages at the

end. Plan your time carefully, since some problems are longer than others. You must turn in pages 1

to 7.

LAST NAME: ___

FIRST NAME:___

SECTION: ___

ID# ___

Question Maximum Point Points

1 3

2 5

3 4

4 6

5 7

Total 25

1. Assembly Errors (3 Points)

Consider the following assembly code.

 .ORIG x3000

.MAIN

 LD R0, ASCII

 LD R1, NEG

LOOP TRAP x22

 BRzp LOOP

 TRAP x23

 ADD R0, R0, MINUSONE

 ADD R3, R0, R1

 BRp LOOP

HALT HALT

ASCII .FILL x0047

NEG .FILL xFFBD

MINUSONE .FILL #-1

 .END

Briefly explain three assembly errors in the above program (3 points)

2. Two-Pass Assembly Process (5 points)
An assembly language LC-3 program is given below :

 .ORIG x3000

 AND R2, R2, #0

 AND R3, R3, #0

 LD R0, M0

 LD R1, M1

LOOP BRz DONE

 ADD R3, R3, #1

 ADD R2, R2, R0

 ADD R1, R1, #-1

 BR LOOP

DONE ST R2, RESULT

 HALT

RESULT .FILL x0000

M0 .FILL x0006

M1 .FILL x0011

 .END

(a). Fill in the symbol table created by the assembler on the first pass of the above program. (3

points)

Symbol Name Address

(b) Once the symbol table is created, the assembler then creates a binary version (.obj) of the

program as listed below (with 2 missing lines). (2 points)

0101 0100 1010 0000 ;AND R2, R2, #0

0101 0110 1110 0000 ;AND R3, R3, #0

0010 0000 0000 1001 ;LD R0, M0

0010 0010 0000 1001 ;LD R1, M1

0000 0100 0000 0100 ;BRz DONE

0001 0110 1110 0001 ;ADD R3, R3, #1

0001 0100 1000 0000 ;ADD R2, R2, R0

____ ____ ____ ____ ;ADD R1, R1, #-1

0000 1111 1111 1011 ;BR LOOP

0011 0100 0000 0001 ;ST R2, RESULT

____ ____ ____ ____ ;HALT (TRAP x25)

0000 0000 0000 0000 ;.FILL x0000

0000 0000 0000 0110 ;.FILL x0006

0000 0000 0001 0001 ;.FILL x0011

3. I/O in LC-3 (4 Points)

An LC-3 program is provided below:

 .ORIG x3000

 LD R0, ASCII

 LD R1, NEG

AGAIN LDI R2, DSR

 BRzp AGAIN

 STI R0, DDR

 ADD R0, R0, #1

 ADD R3, R0, R1

 BRn AGAIN

 HALT

ASCII .FILL x0041

NEG .FILL xFFB6

DSR .FILL xFE04 ; Address of DSR

DDR .FILL xFE06 ; Address of DDR

 .END

a) What does this program do? (3 points)

b) What is the purpose of the Display Status Register (DSR)? (1 points)

4. Subroutines (6 Points)
 1 ;CODE TO INPUT AND PRINT 6 CHARACTERS

 2

 3 .ORIG x3000

 4 AND R0, R0, #0 ; Initialise R0, our counter

 5 LOOP

 6 LEA R1, INPSTRING ; R1 now has base of INPSTRING

 7 ADD R1, R1, R0 ; R1 now has base + offset = R0

 8 ST R0, SAVEREG1 ; SAVE R0

 9 JSR ONECHAR ; Call Subroutine

 10 LD __, SAVEREG1 ; Restore ??

 11 ADD R0, R0, #1 ; Increment R0

 12 LD R1, LENGTH ; Load R1 with minus length

 13 ADD R1, R1, R0 ;

 14 BRn LOOP ; loop till 6 characters are reached

 15 LEA R0, INPSTRING ; Get ready to print

 16 PUTS ; TRAP X22 And print

 17 HALT ; We're done

 18

 19 ONECHAR

 20 ST __, SAVEREG2 ; SAVE ??

 21 GETC ; TRAP X20 Get a character from

 ; Keyboard input.

 22 LD __, SAVEREG2 ; Restore ??

 23 STR R0, R1, #0 ; Save keyboard inp(R0 contains input)

 24 RET

 25

 26 LENGTH .FILL xFFFA ; minus Length (-6)

 27 KBSR .FILL xFE00

 28 KBDR .FILL xFE02

 29 SAVEREG1 .FILL x0

 30 SAVEREG2 .FILL x0

 31 INPSTRING .BLKW 6

 32 .END

In the code above the Subroutine ONECHAR takes 1 character from the user (keyboard) and saves

it into the memory. The assembly code uses ONECHAR in a loop 6 times to input 6 characters and

saves it to the memory. Finally it prints the string to the screen.

(a) Line 8 saves R0 before calling the subroutine ONECHAR. Briefly explain why this is

necessary. (2 points)

(b) What other register needs to be stored and restored inside the subroutine [Fill in lines 20,

22].

(c) Once the subroutine is done, we will have to restore the registers. Fill in the register restored

in line 10 (1 point)

5. General Questions (7 points)
Circle the best answer.

1. A new service routine is defined starting in memory location x3700. After loading a program that

calls this subroutine, the user sets memory location x0066 to x3700. Which of the following can be

used to call this subroutine?

 a. TRAP x66

 b. TRAP x67

 c. TRAP x3700

 d. TRAP x0037

2. JSRR R3 is equivalent to

 a. LEA R7, #1

 JMP R3, #0

 b. LEA R3, #1

 JMP R7, #0

 c. LEA R3, #1

 JMP R3, #0

 d. All of the above are equivalent

3. Which of the following pseudo-op tells the assembler where the program ends

 a. END

 b. .HALT

 c. HALT

 d. .END

4. Assembling the instruction ADD R1, R1, #55 causes which of the following errors

 a. R1 is not initialised

 b. ADD instruction takes only 3 register sources (2 sources + 1 destination)

 c. Immediate value (55) is out of range

 d. The instruction does not cause an error.

5. How many memory locations are used by the following assembly directive :

 PALINDROME .STRINGZ "malayalam"

 a. 9

 b. 8

 c. 10

 d. 11

6. As discussed in lecture, when faced with a difficult decision in the workplace, it is most useful to

 separate the issues at hand into the following categories:

 a. legal, moral, and algorithmic

 b. immediate, mid-term, and long-term

 c. executive, judicial, and legislative

 d. factual, conceptual, and ethical

7. Which of the following combinations best describes the way input/output service routines work

in the LC-3 processor

 a. Special opcode for I/O and interrupt driven

 b. Special opcode for I/O and polling

 c. Memory mapped I/O and polling

 d. All of the above

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

